DOI QR코드

DOI QR Code

Molecular Dynamics (MD) Study of Proton Exchange Membranes for Fuel Cells

연료전지용 수소이온 교환막의 분자동역학 연구

  • Park, Chi Hoon (Department of Energy Engineering, Gyeongnam National University of Science and Technology (GNTECH)) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Hong, Young Taik (Center for Membranes, Korea Research Institute of Chemical Technology (KRICT))
  • 박치훈 (경남과학기술대학교(GNTECH) 에너지공학과) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 홍영택 (한국화학연구원 분리막 연구센터)
  • Received : 2016.09.06
  • Accepted : 2016.09.10
  • Published : 2016.10.31

Abstract

Proton exchange membrane (PEM) is one of the key components of membrane-electrode assembly (MEA), which plays important role in fuel cell performance together with catalysts. It is widely accepted that water channel morphology inside PEMs as a proton pathway significantly affects the PEM performance. Molecular dynamics (MD) simulations are a very useful tool to understand molecular and atomic structures of materials, so that many related researches are currently being studied. In this paper, we summarize the current research trend in MD simulations, present which properties can be characterized, and finally introduce the usefulness of MD simulations to the researchers for proton exchange membranes.

수소이온 교환막(PEM; Proton Exchange Membrane)은 연료전지 막-전극 복합체(MEA; Membrane-electrode Assembly)를 구성하는 핵심 소재 중 하나로서, 촉매와 함께 연료전지 성능을 결정하는 중요한 역할을 한다. 이러한 수소이온교환막의 성능은 내부에 존재하는 수소이온 전달 통로인 수화 채널의 구조에 큰 영향을 받는 것으로 알려져 있다. 분자 동역학(MD; Molecular Dynamics) 전산모사 기술은 이러한 소재 내부의 분자 및 원자구조를 파악하기 위한 유용한 도구로서, 수소이온 교환막의 구조 및 특성에 관한 많은 관련 연구가 진행되고 있다. 본 총설에서는 분자동역학 전산모사 관련 연구에 대한 동향을 정리하고, 이를 통해 어떤 구조적 특징들을 분석할 수 있는지 제시하여, 수소이온 교환막 연구자들과 분리막 연구자들에게 분자동역학 전산모사 기술의 유용성에 대하여 소개하고자 한다.

Keywords

References

  1. S. L. Lewis, "The paris agreement has solved a troubling problem", Nature, 532, 283 (2016). https://doi.org/10.1038/532283a
  2. J. Watson, "Bring climate change back from the future", Nature, 534, 437-437 (2016). https://doi.org/10.1038/534437a
  3. P. J. Egan and M. Mullin, "Recent improvement and projected worsening of weather in the United States", Nature, 532, 357-360 (2016). https://doi.org/10.1038/nature17441
  4. J. Larminie and A. Dicks, "Fuel cell systems explained", pp. 1-24, Wiley, West Sussex (2003).
  5. B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies", Nature, 414, 345-352 (2001). https://doi.org/10.1038/35104620
  6. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480-483 (2016). https://doi.org/10.1038/nature17634
  7. S. Y. Lee, H.-J. Kim, S. Y. Nam, and C. H. Park, "Synthetic strategies for high performance hydrocarbon polymer electrolyte membranes (PEMs) for fuel cells", Membr. J., 26, 1-13 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.1
  8. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443-1498 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  9. Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly(arylene ether sulfone) s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026-4035 (2006). https://doi.org/10.1016/j.polymer.2006.02.032
  10. N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, and M. Rikukawa, "Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction", Polymer, 50, 534-540 (2009). https://doi.org/10.1016/j.polymer.2008.11.029
  11. J. C. Jansen, M. MacChione, E. Tocci, L. De Lorenzo, Y. P. Yampolskii, O. Sanfirova, V. P. Shantarovich, D. Hofmann, and E. Drioli, "Comparative study of different probing techniques for the analysis of the free volume distribution in amorphous glassy perfluoropolymers", Macromolecules, 42, 7589-7604 (2009). https://doi.org/10.1021/ma901244d
  12. C. H. Park, D. J. Kim, and S. Y. Nam, "Molecular dynamics (MD) study of polymeric membranes for gas separation", Membr. J., 24, 341-349 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.341
  13. J. M. Lee, D. J. Kim, M. K. Jeong, M. G. Lee, C. H. Park, and S. Y. Nam, "Synthesis of highly selective polyimide material and comparison of gas permeability by molecular dynamics study", Membr. J., 25, 162-170 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.162
  14. J. M. Haile, "Molecular dynamics simulation", Wiley, New York (1992).
  15. C. H. Park, E. Tocci, S. Kim, A. Kumar, Y. M. Lee, and E. Drioli, "A simulation study on OH-containing polyimide (HPI) and thermally rearranged polybenzoxazoles (TR-PBO): Relationship between gas transport properties and free volume morphology", J. Phys. Chem. B, 118, 2746-2757 (2014). https://doi.org/10.1021/jp411612g
  16. C. H. Park, E. Tocci, Y. M. Lee, and E. Drioli, "Thermal treatment effect on the structure and property change between hydroxy-containing polyimides (HPIs) and thermally rearranged polybenzoxazole (TR-PBO)", J. Phys. Chem. B, 116, 12864-12877 (2012). https://doi.org/10.1021/jp307365y
  17. V. Marcon, D. W. Breiby, W. Pisula, J. Dahl, J. Kirkpatrick, S. Patwardhan, F. Grozema, and D. Andrienko, "Understanding structure-mobility relations for perylene tetracarboxydiimide derivatives", J. Am. Chem. Soc., 131, 11426-11432 (2009). https://doi.org/10.1021/ja900963v
  18. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338-7364 (1998). https://doi.org/10.1021/jp980939v
  19. J. Yang, Y. Ren, A. Tian, and H. Sun, "COMPASS force field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, $H_2,\, O_2, \,N_2, NO, \,CO, \,CO_2, \,NO_2,\, CS_2,\, and\, SO_2$, in liquid phases", J. Phys. Chem. B, 104, 4951-4957 (2000). https://doi.org/10.1021/jp992913p
  20. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 1-10 (2016). https://doi.org/10.1007/s00894-015-2876-x
  21. S. J. Paddison, "The modeling of molecular structure and ion transport in sulfonic acid based ionomer membranes", J. New Mater. Electrochem. Syst., 4, 197-207 (2001).
  22. S. J. Paddison and J. A. Elliott, "Molecular modeling of the short-side-chain perfluorosulfonic acid membrane", J. Phys. Chem. A, 109, 7583-7593 (2005). https://doi.org/10.1021/jp0524734
  23. A. Vishnyakov and A. V. Neimark, "Molecular simulation study of nafion membrane solvation in water and methanol", J. Phys. Chem. B, 104, 4471-4478 (2000). https://doi.org/10.1021/jp993625w
  24. A. Vishnyakov and A. V. Neimark, "Molecular dynamics simulation of nafion oligomer solvation in equimolar methanol-water mixture", J. Phys. Chem. B, 105, 7830-7834 (2001). https://doi.org/10.1021/jp004082p
  25. U. W. Schmitt and G. A. Voth, "Multistate empirical valence bond model for proton transport in water", J. Phys. Chem. B, 102, 5547-5551 (1998). https://doi.org/10.1021/jp9818131
  26. P. Y. Chen, C. P. Chiu, and C. W. Hong, "Molecular structure and transport dynamics in Nafion and sulfonated poly(ether ether ketone ketone) membranes", J. Power Sources, 194, 746-752 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.011
  27. D. J. Kim, C. H. Park, and S. Y. Nam, "Molecular dynamics simulations of modified PEEK polymeric membrane for fuel cell application", Int. J. Hydrogen Energy, 41, 7641-7648 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.220
  28. P. V. Komarov, I. N. Veselov, P. P. Chu, P. G. Khalatur, and A. R. Khokhlov, "Atomistic and mesoscale simulation of polymer electrolyte membranes based on sulfonated poly(ether ether ketone)", Chem. Phys. Lett., 487, 291-296 (2010). https://doi.org/10.1016/j.cplett.2010.01.049
  29. C. H. Park, C. H. Lee, J.-Y. Sohn, H. B. Park, M. D. Guiver, and Y. M. Lee, "Phase separation and water channel formation in sulfonated block copolyimide", J. Phys. Chem. B, 114, 12036-12045 (2010). https://doi.org/10.1021/jp105708m