DOI QR코드

DOI QR Code

Ecotoxicity Assessment of Silver Nanomaterials with Different Physicochemical Characteristics in Diverse Aquatic Organisms

다양한 특성의 은나노물질이 수생생물에 미치는 독성영향평가

  • Hong, Nam-Hui (Gyeongnam Department of Environmental Toxicology Chemistry, Korea Institute of Toxicology) ;
  • Jung, Youn-Joo (Gyeongnam Department of Environmental Toxicology Chemistry, Korea Institute of Toxicology) ;
  • Park, June-Woo (Gyeongnam Department of Environmental Toxicology Chemistry, Korea Institute of Toxicology)
  • 홍남희 (안전성평가연구소 경남환경독성본부) ;
  • 정윤주 (안전성평가연구소 경남환경독성본부) ;
  • 박준우 (안전성평가연구소 경남환경독성본부)
  • Received : 2016.08.16
  • Accepted : 2016.09.07
  • Published : 2016.09.30

Abstract

Silver nanomaterials have been intensively applied in consumer products of diverse industrial sectors because of their strong biocidal properties and reported to be hazardous to aquatic organisms once released in the environment. Nanomaterials including sliver, are known to be different in toxicity according to their physicochemical characteristics such as size, shape, length etc. However studies comparing toxicity among silver nanomaterials with different physicochemical characteristics are very limited. Here, toxicities of silver nanomaterials with different size (50, 100, 150 nm), length (10, $20{\mu}m$), shape (wire, sphere), and coating material (polyvinylpyrrolidone, citrate) using OECD test guidelines were evaluated in aquatic species (zebrafish, daphnia, algae) and compared. On a size property, the smaller of silver nanomaterials, the more toxic to tested organisms. Sphered type of silver nanomaterials was less toxic to organisms than wired type, and shorter nanowires were less toxic than longer ones. Meanwhile the toxic effects of materials coated on silver nanomaterials were slightly different in each tested species, but not statistically significant. To the best of our knowledge, it is first investigation to evaluate and compare ecotoxicity of silver nanomaterials having different physicochemical characteristics using same test species and test guidelines. This study can provide valuable information for human and environmental risk assessment of silver nanomaterials and guide material manufacturers to synthesize silver nanomaterials more safely to human and environment.

지금까지 개발된 나노물질 중 은나노물질은 일상 생활제품에 가장 많이 활용된 나노물질 중 하나로 알려져 있고 다양한 경로를 통해 환경에 유입되어 환경 및 인체에 부정적인 영향을 미칠 수 있는 것으로 알려져 있다. 화학물질과 달리 나노물질은 물리화학적 특성에 따라 동일 나노물질이더라도 그 유해성이 다르다고 알려져 있지만 기존 연구들은 다양한 특성을 동일 시험조건에서 평가하기 보다는 하나의 특성에 대해 독성을 보고하는 수준에 그치고 있다. 따라서 기존 연구들의 서로 다른 시험생물, 시험조건, 나노물질 특성 등을 고려할 때 나노물질의 물리화학적 특성에 따른 독성의 체계적인 비교평가가 어려운 한계가 존재한다. 본 연구는 은나노물질의 다양한 물리화학적 특징에 따라 수생생물에 미치는 독성영향을 평가하고자 한다. 대표적인 3종 (어류, 물벼룩, 조류)의 수생생물에 대한 은나노물질의 입자상 크기 (50, 100, 150 nm), 형태 (입자형, 선형), 코팅물질 종류 (PVP, citrate)에 따라 생태독성평가를 진행하였다. 연구결과, 나노 물질의 크기가 작을수록 그리고 입자상 형태보다 선형에서 독성이 비교적 높게 나타났다. 특히 선형 은나노의 경우, 길이에 비례하여 그리고 입자에 비해 비교적 높은 독성을 나타냈다. 반면, 은나노의 코팅물질 종류는 대상 수생생물에 따라 독성의 영향이 다르게 평가되었다. 본 연구는 은나노물질의 다양한 물리화학적 특성에 기인한 독성을 동일한 시험 조건, 시험생물에서 체계적으로 비교 평가하였다는 점에서 의의가 있으며 본 연구결과는 은나노물질의 환경 및 인체 위해성평가 자료로서 활용될 수 있을 뿐 아니라 보다 안전한 은나노물질 소재개발을 위한 과학적 자료로서 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Artal MC, RD Holtz, F Kummrow, OL Alves and A Umbuzeiro Gde. 2013. The role of silver and vanadium release in the toxicity of silver vanadate nanowires toward Daphnia similis. Environ. Toxicol. Chem. 32:908-912. https://doi.org/10.1002/etc.2128
  2. Aruoja V, I Kurvet, HC Dubourguier and A Kahru. 2004. Toxicity testing of heavy-metal-polluted soils with algae Selenastrum capricornutum: a soil suspension assay. Environ. Toxicol. 19:396-402. https://doi.org/10.1002/tox.20046
  3. Asghari S, SA Johari, JH Lee, YS Kim, YB Jeon, HJ Choi, MC Moon and IJ Yu. 2012. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J. Nanobiotechnology 10:14. https://doi.org/10.1186/1477-3155-10-14
  4. Baetke SC, T Lammers and F Kiessling. 2015. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 88:20150207. https://doi.org/10.1259/bjr.20150207
  5. Bang SH, TH Le, SK Lee, P Kim, JS Kim and Min JH. 2011. Toxicity Assessment of Titanium(IV) Oxide Nanopartkcle Using Daphnia magna (water Flea). Environ. Health Toxicol. 26: e2011002. https://doi.org/10.5620/eht.2011.26.e2011002
  6. Benn TM and P Westerhoff. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42:4133-4139. https://doi.org/10.1021/es7032718
  7. Bian SW, IA Mundunkotuwa, T Rupasinghe and VH Grassian. 2011. Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid. Langmuir 27:6059-6068. https://doi.org/10.1021/la200570n
  8. Carlson C, SM Hussain, AM Schrand, LK Braydich-Stolle, KL Hess, RL Jones and JJ Schlager. 2008. Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. J. Phys. Chem. B. 112:13608-13619. https://doi.org/10.1021/jp712087m
  9. Chae Y and YJ An. 2016. Toxicity and transfer of polyvinylpyrrolidone-coated silver nanowires in an aquatic food chain consisting of algae, water fleas, and zebrafish. Aquat. Toxicol. 173:94-104. https://doi.org/10.1016/j.aquatox.2016.01.011
  10. Cupi D, NB Hartmann and A Baun. 2016. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions. Ecotoxicol. Environ. Saf. 127:144-152. https://doi.org/10.1016/j.ecoenv.2015.12.028
  11. Eckhardt S, P Brunetto, J Cganon, M Priebe, B Ciese and K Fromm. 2013. Nanobiosilver: its interations with peptides and bacteria, and its uses in medicine. Chem. Rev. 113:4708-4754. https://doi.org/10.1021/cr300288v
  12. El Badawy AM, KG Scheckel, MT Suidan and TM Tolaymat. 2012. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ. 429:325-331. https://doi.org/10.1016/j.scitotenv.2012.03.041
  13. El Badawy AM, TP Luxton, RG Silva, KG Scheckel, MT Suidan and TM Tolaymat. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver of NPs suspensions, Environ. Sci. Technol. 44:1260-1266. https://doi.org/10.1021/es902240k
  14. Handy RD, F von der Kammer, JR Lead, M Hassellov, R Owen and M Crane. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287-314. https://doi.org/10.1007/s10646-008-0199-8
  15. Klaine SJ, PJ Alvarez, GE Batley, TF Fernandes, RD Handy, DY Lyon, S Mahendera, MJ Mclaughlin and JR Lead. 2008. Nanometerials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27:1825-1851. https://doi.org/10.1897/08-090.1
  16. Kobayashi N, M Naya, S Endoh, J Maru, K Yamamoto and J Nakanishi. 2009. Comparative pulmonary toxicity study of nano-$TiO_2$ particles of different sizes and agglomerations inrats: Different short- and long term post-instillation results. Toxicology 264:110-118. https://doi.org/10.1016/j.tox.2009.08.002
  17. Kwok KW, M Auffan, AR Badireddy, CM Nelson, MR Wiesner, A Chilkoti, J Liu, SM Marinakos and DE Hinton. 2012. Uptake of silver nanoparticles and toxicity to early life stages of Japanese medaka (Oryzias latipes): effects of coating materials. Aquat. Toxicol. 120:59-66.
  18. Langley DP, G Giustim, M Lagrange, R Collins, C Jimenez, Y Brechet and D Bellet. 2014. Silver nanowire networks: Physical properties and potential integration in solar cells. Sol. Energy Mat. Sol. C. 125:318-324. https://doi.org/10.1016/j.solmat.2013.09.015
  19. Lee JH, YS Kim, KS Song, HR Ryu, JH Sung, JD Park, HM Park, NW Song, BS Shin, D Marshak, K Ahn, JE Lee and IJ Yu. 2013, Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol. 10:36. https://doi.org/10.1186/1743-8977-10-36
  20. Liu J and RH Hurt. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44:2169-2175. https://doi.org/10.1021/es9035557
  21. Meng F and S Jin. 2011. The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett. 12:234-239.
  22. Meredith AN, B Harper and SL Harper. 2016. The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron-and nano sized capsules. Environ. Int. 86:68-74. https://doi.org/10.1016/j.envint.2015.10.012
  23. Newton KM, HL Puppala, CL Kitchens, VL Colvin and SJ Klaine. 2013. Silver nanoparticles toxicity to Daphnis magna is a function of dissolved silver concentration. Environ. Toxicol. Chem. 32:2356-2364. https://doi.org/10.1002/etc.2300
  24. OECD. OECD Test Guidelines for testing of chemicals. Guideline 201: Freshwater Algae and Cyanobacteria, Growth Inhibition Test. adopted: March 2006.
  25. OECD. OECD Test Guidelines for testing of chemicals. Guideline 202: Daphnia sp., Acute immobilisation Test. adopted: April 2004.
  26. OECD. OECD Test Guidelines for testing of chemicals. Guideline 203: Fish, Acute Toxicity Test. adopted: July 1992.
  27. Park JW, JH Oh, WK Kim and SK Lee. 2014. Toxicity of Citrate-Coated Silver Nanoparticles Differs According to Method of Suspension Preparation. Bull. Environ. Contam. Toxicol. 93:53-59. https://doi.org/10.1007/s00128-014-1296-4
  28. Park MV, AM Neigh, JP Vermeulen, LJ de la Fonteyne, HW Verharen, JJ Briede, H van Loveren and WH de Jong. 2011. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanopartcles. Biomaterials 32:9810-9817. https://doi.org/10.1016/j.biomaterials.2011.08.085
  29. Powers CM, TA Slotkin, FJ Seidler, AR Badireddy and S Padilla. 2011. Siver nanoparticles alter zebrafish development and larval behavior: Distinct roles for particle size, coating and composition. Neurotoxicol. Teratol. 33:708-714. https://doi.org/10.1016/j.ntt.2011.02.002
  30. Rahaman Mds, CD Vecitis and M Elimelech. 2012. Electrochemical cabon nanotube filter performance towards virus removal and inactivation in the presence of natural organic matter. Environ. Sci. Technol. 46:1556-1564. https://doi.org/10.1021/es203607d
  31. Ribeiro F, JA Gallego-Urrea, K Jurkschat and A Crossley, Hassellov M, Taylor C, Soares AM, Loureiro S. 2014. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 466-467:232-241.
  32. Romer I, TA White, M Baalousha, K Chipman, MR Viant and JR Lead. 2011. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr A. 1218:4226-4233. https://doi.org/10.1016/j.chroma.2011.03.034
  33. Schwab F, TD Burcheli, LP Lukhele, A Magrez, B Nowack, L Sigg and K Knauer. 2011. Are carbon nanotube effects on grees algae caused by shading and agglomeration? Environ. Sci. Technol. 45:6136-6144. https://doi.org/10.1021/es200506b
  34. Silva RM, J Xu, C Saiki, DS Anderson, LM Franzi, CD Vulpe, B Gilbert, LS Van Winkle and KE Pinkerton. 2014. Short versus long silver nanowiers: a comparison of in vivo pulmonary effects post instillation. Part. Fibre Toxicol. 11:52. https://doi.org/10.1186/s12989-014-0052-6
  35. Silva T, LR Pokhrel, B Dubey, TM Tolaymat, KJ Maier and X Liu. 2014. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Sci. Total Environ. 468-469:968-976. https://doi.org/10.1016/j.scitotenv.2013.09.006
  36. Sohn EK, SA Johari, JK Kim, E Kim, JH Lee, YS Chung and IJ Yu. 2015. Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res. Int. 2015:893049.
  37. Sund J, H Alenius, M Vippola, K Savolainen and A Puustinen. 2011. Protenomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity. ACS Nano 5:4300-4309. https://doi.org/10.1021/nn101492k
  38. Tejamaya M, I Roemer, RC Merrifield and JR Lead. 2012. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 46:7011-7017. https://doi.org/10.1021/es2038596
  39. Vecitis CD, KR Zodrow, S Kang and M Elimelech. 2010. Electronic structure-dependent Bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471-5479. https://doi.org/10.1021/nn101558x
  40. Wang X, Z Ji, CH Chang, H Zhang, M Wang, YP Liao, S Lin, H Meng, R Li, B Sun, LV Winkle, KE Pinkerton, JI Zink, T Xia and AE Nel. 2014. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385-398. https://doi.org/10.1002/smll.201301597
  41. Wiench K, W Wohlleben, V Hisgen, K Radke, E Salinas, S Zok and R Landsiedel. 2009. Acute and Chronic effects of nano- and non-nono-scale $TiO_2$ and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnis magna. Chemospere 76:1356-1365. https://doi.org/10.1016/j.chemosphere.2009.06.025
  42. Zhang T, L Wang, Q Chen and C Chen. 2014. Cytotoxic potential of silver nanoparticles. Yonsei Med. J. 55:283-291. https://doi.org/10.3349/ymj.2014.55.2.283