DOI QR코드

DOI QR Code

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach

Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측

  • Kim, Tae-Geun (National Park Research Institute, Korea National Park Services) ;
  • Yang, DooHa (Department of Park Conservation, Korea National Park Services) ;
  • Cho, YoungHo (Division of Ecological Assessment, National Institute of Ecology) ;
  • Song, Kyo-Hong (Division of Ecological Assessment, National Institute of Ecology) ;
  • Oh, Jang-Geun (National Park Research Institute, Korea National Park Services)
  • 김태근 (국립공원관리공단 국립공원연구원) ;
  • 양두하 (국립공원관리공단 자원보전처) ;
  • 조영호 (국립생태원 생태평가연구실) ;
  • 송교홍 (국립생태원 생태평가연구실) ;
  • 오장근 (국립공원관리공단 국립공원연구원)
  • Received : 2016.08.10
  • Accepted : 2016.10.01
  • Published : 2016.09.30

Abstract

This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.

본 연구는 국립공원을 포함한 국내 보호지역에서 반달가슴곰 (Ursus thibetanus)을 효과적으로 보전하고, 종 복원을 성공하기 위해서 종의 재도입에 적합한 지역을 객관적으로 평가하기 위한 기초자료를 제공하는 데 그 목적이 있다. 이를 위해서 Maxent 모델과 기후, 지형, 그리고 도로 및 토지이용과 관련된 환경 변수를 이용하여 반달가슴곰의 출현 기록이 있는 동아시아, 동남아시아, 그리고 인도를 대상으로 잠재 서식지를 예측하고, 이와 관련된 기후 및 환경 변수의 영향을 평가하였다. 또한 미래 기후변화에 따라서 반달가슴곰에게 적합한 서식 범위의 면적과 지리적인 변화를 분석하였다. 생물보전을 위해서 야생생물의 서식지분포연구에 널리 활용되고 있는 Maxent 모델의 판별정확도를 나타내는 AUC 값이 0.893 (sd=0.121)으로 산출되었다. 이는 반달가슴곰의 잠재 서식지를 예측하고 미래 기후변화에 따른 서식지 변화특성을 평가하는 데 유용하였다. IUCN에서 평가한 반달가슴곰의 분포지도와 비교해서, 현존 지역 (Extant)은 Maxent 모델로 예측된 서식 확률이 국가별 지역적으로 다양하고, 멸종 지역 (Extinct)은 상대적으로 낮았다. 이는 반달가슴곰이 서식하는 환경 특성의 차이가 지역적으로 반영된 결과라 할 수 있다. 반달가슴곰의 잠재 서식지 분포에 영향을 주는 환경은 기후, 지형 그리고 인위적 요소인 도로로부터의 거리와 같은 요소보다 토지피복 유형의 영향이 가장 높았는데, 특히 낙엽활엽수림지역이 더욱 선호될 것으로 예측되었다. 또한 기온의 연간범위보다 연평균강수량과 건조시기의 강수량의 영향이 더욱 클 것으로 예측되었고 도로로부터 거리가 멀어질수록 서식가능성이 높은 것으로 나타났다. 이는 반달가슴곰은 먹이자원뿐만 아니라 인간의 간섭이 없는 보다 안정된 지역을 선호할 것으로 추측된다. 미래 기후변화에 따라서 서식적합지역은 점차 확장할 것으로 전망되었고, 남한에서는 전남, 전북 그리고 강원도지역이, 일본에서는 Kyushu, Chugoku, Shikoku, Chubu, Kanto 그리고 Tohoku의 접경 지역이, 중국에서는 Jiangxi, Zhejiang 그리고 Fujian의 접경 지역이 향후 아시아지역에서 반달가슴곰이 서식할 수 있는 핵심지역이 될 것으로 예상된다. 본 연구는 반달가슴곰의 서식지 보전과 효율적인 관리, 인위적으로 도입된 개체의 방사지점 선정, 향후 서식 범위의 확장에 따른 보호지역 설정 그리고 인간과 충돌지역의 관리에 대한 기초자료로서 활용될 것으로 기대된다.

Keywords

References

  1. Chefaoui, R.M., J. Hortal and J.M. Lobo. 2005. Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biological Conservation 122: 327-338. https://doi.org/10.1016/j.biocon.2004.08.005
  2. Dokoa, T., H. Fukuib, A. Kooimanc, A.G. Toxopeusc, T. Ichinosed, W. Chene and A.K. Skidmorec. 2011. Identifying habitat patches and potential ecological corridors for remnant Asiatic black bear (Ursus thibetanus japonicus) populations in Japan. Ecological Modelling 222: 748-761. https://doi.org/10.1016/j.ecolmodel.2010.11.005
  3. Elith, J. 2000. Quantitative Methods for Modeling Species Habitat: Comparative Performance and an Application to Australian Plants, p. 39-58. In: Quantitative Methods for Conservation Biology (Ferson S. and M. Burgman, eds.). Springer.
  4. Elith, J., S. Ferrier, F. Huettmann and J. Leathwick. 2006. The evaluation strip : A new and robust method for poltting predicted responses from species distribution model. Ecology Modelling 186(3): 280-289.
  5. ESRI. 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute (ESRI), Redlands, CA.
  6. Fleishman, E., D.D. Murphy and P.F. Brussard. 2000. A New Method for selection of umbrella species for conservation planning. Ecological Applications 10(2): 560-579.
  7. Garshelis, D.L. and R. Steinmetz (IUCN SSC Bear Specialist Group). 2008. Ursus thibetanus. The IUCN Red List of Threatened Species 2008: e.T22824A9391633.
  8. GBIF. 2012. Recommended practices for citation of the data published through the GBIF Network. Version 1.0 (Authored by Vishwas Chavan), Copenhagen: Global Biodiversity Information Facility. Pp.12, ISBN: 87-92020-36-4. Accessible at http://links.gbif.org/gbif_best_practice_ data_citation_en_v1.
  9. Guisan, A. and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9
  10. Guisan, A., O. Broennimann, R. Engler, M. Vust, N.G. Yoccoz, A. Lehmann and N.E. Zimmermann. 2006. Using Niche- Based Models to Improve the Sampling of Rare Species. Conservation Biology 20(2): 501-511. https://doi.org/10.1111/j.1523-1739.2006.00354.x
  11. Guisan, A., R. Tingley, J.B. Baumgartner, I. Naujokaitis-Lewis, P.R. Sutcliffe, A.I.T. Tulloch, T.J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T.G. Martin, J.R. Rhodes, R. Maggini, S.A. Setterfield, J. Elith, M.W. Schwartz, B.A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M.R. Kearney, H.P. Possingham and Y.M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16: 1424-1435. https://doi.org/10.1111/ele.12189
  12. Hijmans, R.J., L. Guarino and P. Mathur. 2012. DIVA-GIS version 7.5 manual. California, USA: University of California Davis. Manual available at http://www.diva-gis.org/
  13. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. https://doi.org/10.1002/joc.1276
  14. Hirzel, A.H., B. Posse, P.A. Oggier, Y. Crettenand, C. Glenz and R. Arlettaz. 2004. Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. Journal of Applied Ecology 41: 1103-1116. https://doi.org/10.1111/j.0021-8901.2004.00980.x
  15. Huygens, O.C., T. Miyashita, B. Dahle, M. Carr, S. Izumiyama, T. Sugawara and H. Hayashi. 2003. Diet and feeding habits of Asiatic black bears in the Northern Japanese Alps. Ursus 14(2): 236-245.
  16. Hwang, M.H. and D.L. Garshelis. 2007. Activity patterns of asiatic black bear (Ursus thibetanus) in the central mountains of Taiwan. Journal of Zoology 271: 203-209. https://doi.org/10.1111/j.1469-7998.2006.00203.x
  17. IUCN. 2016. The IUCN Red List of Threatened Species. Version 2016-1. http://www.iucnredlist.org. Downloaded on 20 July 2016.
  18. Jarvis, A., H.I. Reuter, A. Nelson and E. Guevara. 2008. Holefilled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar. org).
  19. Kang, H.S. and K.J. Baek. 2005. Evaluation home ranges of endangered Asiatic black bear for In Situ conservation. Korean Journal Ecololgy 28: 395-404. https://doi.org/10.5141/JEFB.2005.28.6.395
  20. Kim, J.J., S.D. Kim, J.G. Kang, J.K. Kim and H.S. Moon. 2011. Analysis of Home Range of Asiatic Black Bear Released in Jirisan National Park. Journal of Agriculture & Life Science 45(5): 41-47.
  21. Korea National Park Service (KNPS). 2015. Annual Performance Report of Species Restoration Center.
  22. Korea Society For the Protection of Wild life. 1983. Report on rare species of Korea.
  23. Loveland, T.R. and A.S. Belward. 1997. The IGBP-DIS global 1km land cover data set, DISCover: First results. International Journal of Remote Sensing 18(15): 3289-3295. https://doi.org/10.1080/014311697217099
  24. Ministry of Environment (ME). 2016. Natural Environment Conservation Act.
  25. Morrison, M.L., B.G. Marcot and P.W. Mannan. 1992. Wildlife- habitat Relationships, Concepts and Applications. University of Wisconsin Press, Madison.
  26. Nagy, J.A. and J.R. Gunson. 1990. Management plan for grizzly bears in Alberta. Wildlife management planning series No. 2. Forestry, Lands, and Wildlife, Fish and Wildlife Division. Edmonton. 164pp.
  27. National Institute of Environmental Research. 2002. New technique for the restoration of endangered species in Korea.
  28. NatureServe and IUCN (International Union for Conservation of Nature). 2007. Ursus thibetanus. The IUCN Red List of Threatened Species. Version 2014.1 http://www.iucnredlist.org. Downloaded on 20 July 2016.
  29. Pearson, R.J., C.J. Raxworthy, M. Nakamura and P.A. Townsend. 2007. Predicting species distribution from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography 34: 102-117.
  30. Phillips, S.J., R. Anderson and R. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  31. Phillips, S.J. 2008. Response to "Transferability and model evaluation in ecological niche modelling". Ecography 31: 272-278. https://doi.org/10.1111/j.0906-7590.2008.5378.x
  32. Phillips, S.J. and M. Dudik. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  33. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  34. Rodriguez, J.P., L. Brotons, J. Bustamante and J. Seoane. 2007. The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions 13: 243-251. https://doi.org/10.1111/j.1472-4642.2007.00356.x
  35. Sanchez-Cordero, V., V. Cirelli, M. Munguia and S. Sarkar. 2005. Place Prioritization for Biodiversity Repersentation Using Species' Ecological Niche Modeling. Biodeiversity Infomatics 2: 11-23.
  36. Santos, X., J.C. Brito, J. Caro, A.J. Abril, M. Lorenzo, N. Sillero and J.M. Pleguezuelos. 2009. Habitat suitability, threats and conservation of isolated populations of the smooth snake (Coronella austriaca) in the southern Iberian Peninsula. Biological Conservation 142: 344-352. https://doi.org/10.1016/j.biocon.2008.10.030
  37. Steinmetz, R., D.L. Garshelis, W. Chutipong and N. Seuaturien. 2013. Foraging ecology and coexistence of Asiatic black bears and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy 94(1): 1-18. https://doi.org/10.1644/11-MAMM-A-351.1
  38. Thomas, C.D., A. Cameron, R.E. Green, M. Bakkenes, L.J. Beaumont, Y.C. Collingham, B.F.N. Erasmus, M.F.D. Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A.S.V. Jaarsveld, G.F. Midgley, L. Miles, M.A. Ortega-Huerta, A. Townsend Peterson, O.L. Phillips and S.E. Williams. 2004. Extinction risk from climate change. Nature 427: 145-148. https://doi.org/10.1038/nature02121
  39. Vaclavik, T. and R.K. Meentemeyer. 2009. Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions? Ecological Modelling 220: 3248-3258. https://doi.org/10.1016/j.ecolmodel.2009.08.013
  40. Wong, S.T., C.W. Servheen and L. Ambu. 2004. Home range, movement and activity pattern, and bedding sites of Malayan sun bears Helarctos malayanus in the rainforest of Borneo. Biological Conservation 119: 169-181. https://doi.org/10.1016/j.biocon.2003.10.029
  41. WorldClim. 2005. WorldClim-Global Climate Data, http://www.worldclim.org, accessed on: 20th August 2009.
  42. Yang, D.H., B.H. Kim, D.H. Jung, D.H. Jung, W.J. Jeong and B.G. Lee. 2008. The studies on characteristics of home range size and habitat use of the Asiatic black bear released in Jirisan. Korean Journal of Environment and Ecology 22: 427-434.