DOI QR코드

DOI QR Code

Hydrogen Gas Sensing of Co3O4-Decorated WO3 Nanowires

  • Park, Sunghoon (Department of Materials science and Engineering, Inha University) ;
  • Sun, Gun-Joo (Department of Materials science and Engineering, Inha University) ;
  • Kheel, Hyejoon (Department of Materials science and Engineering, Inha University) ;
  • Hyun, Soong Keun (Department of Materials science and Engineering, Inha University) ;
  • Jin, Changhyun (School of Mechanical Engineering, Konkuk University) ;
  • Lee, Chongmu (Department of Materials science and Engineering, Inha University)
  • Received : 2015.07.20
  • Accepted : 2015.09.17
  • Published : 2016.01.20

Abstract

$Co_3O_4$ nanoparticle-decorated $WO_3$ nanowires were synthesized by the thermal oxidation of powders followed by a solvothermal process for $Co_3O_4$ decoration. The $Co_3O_4$ nanoparticle-decorated $WO_3$ nanowire sensor exhibited a stronger and faster electrical response to $H_2$ gas at $300^{\circ}C$ than the pristine $WO_3$ nanowire counterpart. The former showed faster response and recovery than the latter. The pristine and $Co_3O_4$-decorated $WO_3$ nanowire sensors showed the strongest response to $H_2$ gas at 225 and $200^{\circ}C$, respectively. The $Co_3O_4$-decorated $WO_3$ nanowire sensor showed selectivity for $H_2$ gas over other reducing gases. The enhanced sensing performance of the $Co_3O_4$-decorated $WO_3$ nanowire sensor was explained by a combination of mechanisms: modulation of the depletion layer width forming at the $Co_3O_4-WO_3$ interface, modulation of the potential barrier height forming at the interface, high catalytic activity of $Co_3O_4$ for the oxidation of $H_2$, active adsorption of oxygen by the $Co_3O_4$ nanoparticle surface, and creation of more active adsorption sites by $Co_3O_4$ nanoparticles.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. Tamaki, T. Maekawa, N. Miura, and N. Yamazoe, Sensor. Actuat. B-Chem. 9, 197 (1992). https://doi.org/10.1016/0925-4005(92)80216-K
  2. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, Sensor. Actuat. B-Chem. 157, 329 (2011). https://doi.org/10.1016/j.snb.2011.04.070
  3. L. Fields, J. Zheng, Y. Cheng, and P. Xiong, Appl. Phys. Lett. 88, 232 (2006).
  4. K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, Sensor. Actuat. B-Chem. 145, 232 (2010). https://doi.org/10.1016/j.snb.2009.11.067
  5. M. Ramanathan, G. Skudlarek, H. H. Wang, and S. B. Darling, Nanotechnology 21, 125501 (2010). https://doi.org/10.1088/0957-4484/21/12/125501
  6. K. J. Liekus, I. A. Zlochower, K. L. Cashdollar, S. M. Djordjevic, and C. A. Loehr, J. Loss Prevent. Proc. 13, 377 (2000). https://doi.org/10.1016/S0950-4230(99)00034-0
  7. S. Park, S. An, H. Ko, C. Jin, and C. Lee, ACS Appl. Mater. Interfaces 4, 3650 (2012). https://doi.org/10.1021/am300741r
  8. Y. J. Kwon, H. G. Na, S. S. Kim, P. Wu, and H. W. Kim, Met. Mater. Int. 21, 956 (2015). https://doi.org/10.1007/s12540-015-4443-5
  9. J. H. Yoon and J. S. Kim, Met. Mater. Int. 16, 773 (2010). https://doi.org/10.1007/s12540-010-1012-9
  10. J. M. Lim, K. C. Shin, H. W. Kim, and C. Lee, Thin Solid Films 475, 256 (2005). https://doi.org/10.1016/j.tsf.2004.08.046
  11. M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, Angew. Chem. Int. Edit. 41, 2511 (2002).
  12. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, Sensor. Actuat. B-Chem. 142, 61 (2009). https://doi.org/10.1016/j.snb.2009.07.031
  13. S. Park, S. An, Y. Mun, and C. Lee, ACS Appl. Mater. Interfaces 5, 4285 (2013). https://doi.org/10.1021/am400500a
  14. A. S. Zoolfakar, M. Z. Ahmad, R. A. Rani, J. Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, and K. Kalantar-zadeh, Sensor. Actuat. B-Chem. 185, 620 (2013). https://doi.org/10.1016/j.snb.2013.05.042
  15. K. Pirkanniemi and M. Sillanpaa, Chemosphere 48, 1047 (2002). https://doi.org/10.1016/S0045-6535(02)00168-6
  16. M. M. Bettahar, G. Costentin, L. Savary, and J. C. Lavalley, Appl. Catal. A-Gen. 145, 1 (1996). https://doi.org/10.1016/0926-860X(96)00138-X
  17. H. R. Kim, K. I. Choi, K. M. Kim, I. D. Kim, G. Cao, and J. H. Lee, Chem. Commun. 46, 5061 (2010). https://doi.org/10.1039/c0cc00213e
  18. H. T. Sun, C. Cantalini, L. Lozzi, M. Passacantando, S. Santucci, and M. Pelino, Thin Solid Films 287, 258 (1996). https://doi.org/10.1016/S0040-6090(96)08745-7
  19. B. Cao, J. Chen, X. Tang, and W. Zhou, J. Mater. Chem. 19, 2323 (2009). https://doi.org/10.1039/b816646c
  20. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, Appl. Phys. Lett. 88, 203101 (2006). https://doi.org/10.1063/1.2203932
  21. O. Merdrignac-Conanec and P. T. Moseley, J. Mater. Chem. 12, 1779 (2002). https://doi.org/10.1039/b111118n
  22. J. H. Pan, S.Y.Chail, C. Lee, S. E. Park, and W. I. Lee, J. Phys. Chem. C. 111, 5582 (2007).
  23. I. Jimenez, M. A. Centeno, R. Scotti, F. Morazzoni, J. Arbiol, A. Cornet, and J. R. Morante, J. Mater. Chem. 14, 2412 (2004). https://doi.org/10.1039/B400872C
  24. C. S. Rout, A. Govindaraj, and C. N. R. Rao, J. Mater. Chem. 16, 3936 (2006). https://doi.org/10.1039/b607012b
  25. C. C. Li, Z. F. Du, L. M. Li, H. C. Yu, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 91, 032101 (2007). https://doi.org/10.1063/1.2752541
  26. M. S. Hwang, and C. Lee, Mater. Sci. Eng. B-Adv. 75, 24 (2000). https://doi.org/10.1016/S0921-5107(00)00381-0
  27. J. F. Chang, H. H. Kuo, I. C. Leu, and M. H. Hon, Sens. Actuators B 84, 258 (2002). https://doi.org/10.1016/S0925-4005(02)00034-5
  28. N. Barsan and U. Weimar, J. Electroceram. 7, 143 (2001). https://doi.org/10.1023/A:1014405811371
  29. A. R. Raju and C. N. R. Rao, Sensor. Actuat. B-Chem. 3, 305 (1991). https://doi.org/10.1016/0925-4005(91)80021-B
  30. D. Patil, L. Patil, and P. Patil, Sensor. Actuat. B-Chem. 126, 368 (2007). https://doi.org/10.1016/j.snb.2007.03.028
  31. S. Park, H. Ko, S. Kim, and C. Lee, ACS Appl. Mater. Interfaces 6, 9595 (2014). https://doi.org/10.1021/am501975v
  32. K. Jain, R. P. Pant, and S. T. Lakshmikumar, Sensor. Actuat. B-Chem. 113, 823 (2006). https://doi.org/10.1016/j.snb.2005.03.104
  33. E. Salje, J. Appl. Crystallogr. 7, 615 (1974). https://doi.org/10.1107/S0021889874010545
  34. D. Miller, S. Akbar, and P. Morris, Sensor. Actuat. B-Chem. 204, 250 (2014). https://doi.org/10.1016/j.snb.2014.07.074
  35. A. O. Gulino, P. Dapporto, P. Rossi, and I. Fragala, Chem. Mater. 15, 3748 (2003). https://doi.org/10.1021/cm034305z
  36. L. Xing, S. Yuan, Z. Chen, Y. Chen, and X. Xue, Nanotechnology 22, 1 (2011).
  37. X. Xie, Y. Li, Z. Q. Liu, M. Haruta, and W. Shen, Nature 458, 746 (2009). https://doi.org/10.1038/nature07877
  38. A. K. Chakraborty, Z. Qi, S. Y.Chail, C. Lee, S. Y. Park, D. J. Jang, and W. I. Lee, Appl. Catal. B-Environ. 93, 368 (2010). https://doi.org/10.1016/j.apcatb.2009.10.010
  39. M.-C. Shin, J. H. Kim, J.-S. Cha, B. K. Shin, and H. S. Lee, Korean J. Met. Mater. 51, 57 (2013). https://doi.org/10.3365/KJMM.2013.51.1.057

Cited by

  1. Synthesis of g-C3N4-Decorated ZnO Porous Hollow Microspheres for Room-Temperature Detection of CH4 under UV-Light Illumination vol.9, pp.11, 2016, https://doi.org/10.3390/nano9111507
  2. Metal Oxide Based Heterojunctions for Gas Sensors: A Review vol.11, pp.4, 2016, https://doi.org/10.3390/nano11041026