DOI QR코드

DOI QR Code

One-pot microwave-assisted synthesis of reduced graphene oxide/nickel cobalt double hydroxide composites and their electrochemical behavior

  • Kim, Yuna (School of Chemical and Biochemical Engineering, Pusan National University) ;
  • Cho, Eun-sam (School of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Kim, Seok (School of Chemical and Biochemical Engineering, Pusan National University)
  • Received : 2015.07.03
  • Accepted : 2015.09.21
  • Published : 2016.01.25

Abstract

Reduced graphene oxide (RGO)/nickel cobalt (NiCo) double hydroxide composites were synthesized by one-pot microwave-assisted method in propylene carbonate. This method is efficient because the reduction of graphene oxide and the formation of hydroxide particles on the graphene sheets were simultaneously produced. We investigated an effect of microwave irradiation in organic solvent and an electrochemical influence of nickel and cobalt ratio in double hydroxide. Morphological characterization was performed by XRD, FTIR, XPS and FE-SEM. It was found that the NiCo double hydroxide particles were well decorated on the surface of RGO sheets and the reduction of graphene oxide was completed by short-term microwave irradiation. Electrochemical behavior was also measured by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge performance. The highest specific capacitance was $1622F\;g^{-1}$ obtained at (RGO)/NiCo 2:1 (weight ratio of nickel to cobalt was 2-1). Furthermore, the composites showed higher capacitance, as well as lower resistance, better rate capability and longer cycle life rather than $RGO/Ni(OH)_2$ and $RGO/Co(OH)_2$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. G. Yu, X. Xie, L. Pan, Z. Bao, Y. Cui, Nano Energy 2 (2013) 213. https://doi.org/10.1016/j.nanoen.2012.10.006
  2. P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845. https://doi.org/10.1038/nmat2297
  3. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Nano Lett. 10 (2010) 4863. https://doi.org/10.1021/nl102661q
  4. Y. Huang, J. Liang, Y. Chen, Small 8 (2012) 1805. https://doi.org/10.1002/smll.201102635
  5. S. Park, S. Kim, Electrochim. Acta 89 (2013) 516. https://doi.org/10.1016/j.electacta.2012.11.075
  6. J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, Nano Lett. 11 (2011) 1423. https://doi.org/10.1021/nl200225j
  7. Y. Si, E.T. Samulski, Chem. Mater. 20 (2008) 6792. https://doi.org/10.1021/cm801356a
  8. J.Y. Park, S. Kim, Int. J. Hydrogen Energy 38 (2013) 6275. https://doi.org/10.1016/j.ijhydene.2012.12.059
  9. J. Kim, S. Kim, Appl. Surf. Sci. 295 (2014) 31. https://doi.org/10.1016/j.apsusc.2013.12.156
  10. D. Kim, S.J. Yang, Y.S. Kim, H. Jung, C.R. Park, Carbon 50 (2012) 3229. https://doi.org/10.1016/j.carbon.2011.11.014
  11. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45 (2007) 1558. https://doi.org/10.1016/j.carbon.2007.02.034
  12. D. Sun, X. Yan, J. Lang, Q. Xue, J. Power Sources 222 (2013) 52. https://doi.org/10.1016/j.jpowsour.2012.08.059
  13. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48 (2010) 2106. https://doi.org/10.1016/j.carbon.2010.01.050
  14. M.A. Surati, S. Jauhari, K.R. Desai, Arch. Appl. Sci. Res. 4 (2012) 645.
  15. L. Su, X. Zhang, C. Yuan, B. Gao, J. Electrochem. Soc. 155 (2008) A110. https://doi.org/10.1149/1.2806844
  16. J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, Z. Jiang, Energy Fuels 24 (2010) 6463. https://doi.org/10.1021/ef101150b
  17. V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21 (2009) 5004. https://doi.org/10.1021/cm902413c
  18. M. Li, J.P. Cheng, J.H. Fang, Y. Yang, F. Liu, X.B. Zhang, Electrochim. Acta 134 (2014) 309. https://doi.org/10.1016/j.electacta.2014.04.141
  19. H. Hsu, K. Chang, R.R. Salunkhe, C. Hsu, C. Hu, Electrochim. Acta 94 (2013) 104. https://doi.org/10.1016/j.electacta.2013.01.125
  20. Y. Tao, L. Ruiyi, L. Zaijun, Mater. Res. Bull. 51 (2014) 97. https://doi.org/10.1016/j.materresbull.2013.11.044
  21. T. Liu, S. Xu, L. Wang, J. Chu, Q. Wang, X. Zhu, N. Bing, P.K. Chu, J. Mater. Chem. 21 (2011) 19093. https://doi.org/10.1039/c1jm14031k
  22. H. Kim, H. Lim, S. Kim, J. Hong, D. Seo, D. Kim, S. Jeon, S. Park, K. Kang, Sci. Rep. 3 (2013) 1506. https://doi.org/10.1038/srep01506
  23. M. Li, S. Xu, Y. Zhu, P. Yang, L. Wang, P.K. Chu, J. Alloys Compd. 589 (2014) 364. https://doi.org/10.1016/j.jallcom.2013.11.230
  24. R.R. Salunkhe, K. Jang, S. Lee, H. Ahn, RSC Adv. 2 (2012) 3190. https://doi.org/10.1039/c2ra01220k
  25. J. Liang, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki, Chem. Mater. 22 (2010) 371. https://doi.org/10.1021/cm902787u
  26. X. Sun, G. Wang, H. Sun, F. Lu, M. Yu, J. Lian, J. Power Sources 238 (2013) 150. https://doi.org/10.1016/j.jpowsour.2013.03.069
  27. J. Liu, X. Wang, X. Yao, J. Wang, Z. Liu, Particuology 10 (2012) 24. https://doi.org/10.1016/j.partic.2011.04.010
  28. D.P. Dubal, A.D. Jagadale, S.V. Patil, C.D. Lokhande, Mater. Res. Bull. 47 (2012) 1239. https://doi.org/10.1016/j.materresbull.2012.01.026
  29. L. Xie, Z. Hu, C. Lv, G. Sun, J. Wang, Y. Li, H. He, J. Wang, K. Li, Electrohim. Acta 78 (2012) 205. https://doi.org/10.1016/j.electacta.2012.05.145
  30. J. Pu, Y. Tong, S. Wang, E. Sheng, Z. Wang, J. Power Sources 250 (2014) 250. https://doi.org/10.1016/j.jpowsour.2013.10.108
  31. V. Gupta, T. Kawaguchi, N. Miura, Mater. Res. Bull. 44 (2009) 202. https://doi.org/10.1016/j.materresbull.2008.04.020
  32. V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21 (2009) 5004. https://doi.org/10.1021/cm902413c
  33. V. Gupta, S. Gupta, N. Miura, J. Power Sources 189 (2009) 1292. https://doi.org/10.1016/j.jpowsour.2009.01.026
  34. M. Oh, S. Kim, Electrochim. Acta 59 (2012) 196. https://doi.org/10.1016/j.electacta.2011.10.058
  35. J. Kim, S. Kim, Electrochim. Acta 119 (2014) 11. https://doi.org/10.1016/j.electacta.2013.11.187
  36. Y. Zhang, B. Cui, C. Zhao, H. Lin, J. Li, Phys. Chem. Chem. Phys. 15 (2013) 7363. https://doi.org/10.1039/c3cp50202c
  37. B.P. Bastakoti, Y. Kamachi, H. Huang, L. Chen, K.C. Wu, Y. Yamauchi, Eur. J. Inorg. Chem. (2013) 39.
  38. S.G. Kandalkar, H. Lee, S.H. Seo, K. Lee, C. Kim, J. Mater. Sci. 46 (2011) 2977. https://doi.org/10.1007/s10853-010-5174-0
  39. H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24 (2014) 934. https://doi.org/10.1002/adfm.201301747
  40. W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, L. Liu, ACS Appl. Mater. Sci. 5 (2013) 5443. https://doi.org/10.1021/am4003843
  41. M. Shao, F. Ning, Y. Zhao, J. Zhao, M. Wei, D.G. Evans, X. Duan, Chem. Mater. 24 (2012) 1192. https://doi.org/10.1021/cm203831p

Cited by

  1. A fast and mild in-situ oxidization method to fabricate the nickel-cobalt layered double hydroxides on Ni foam as the high-performance electrode materials vol.10, pp.3, 2016, https://doi.org/10.1142/s1793604717500412
  2. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation vol.8, pp.2, 2016, https://doi.org/10.3390/nano8020106
  3. Transforming Nickel Hydroxide into 3D Prussian Blue Analogue Array to Obtain Ni2 P/Fe2 P for Efficient Hydrogen Evolution Reaction vol.8, pp.21, 2016, https://doi.org/10.1002/aenm.201800484
  4. Rapid synthesis of Ni(OH)2/graphene nanosheets and NiO@Ni(OH)2/graphene nanosheets for supercapacitor applications vol.43, pp.7, 2016, https://doi.org/10.1039/c8nj04959a
  5. Hierarchical NiCo LDH-rGO/Ni Foam Composite as Electrode Material for High-Performance Supercapacitors vol.25, pp.3, 2019, https://doi.org/10.1007/s12209-018-0180-4
  6. Advances in Layered Double Hydroxide/Carbon Nanocomposites Containing Ni2+ and Co2+/3+ for Supercapacitors vol.7, pp.None, 2016, https://doi.org/10.3389/fmats.2020.00147
  7. Graphene-supported organic-inorganic layered double hydroxides and their environmental applications: A review vol.273, pp.None, 2020, https://doi.org/10.1016/j.jclepro.2020.122980
  8. Graphene-supported organic-inorganic layered double hydroxides and their environmental applications: A review vol.273, pp.None, 2020, https://doi.org/10.1016/j.jclepro.2020.122980
  9. The electrochemical kinetics of cerium selenide nano-pebbles: the design of a device-grade symmetric configured wide-potential flexible solid-state supercapacitor vol.3, pp.4, 2016, https://doi.org/10.1039/d0na00893a
  10. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications vol.13, pp.27, 2016, https://doi.org/10.1039/d1nr01134k
  11. Combined electrochemical and DFT investigations of iron selenide: a mechanically bendable solid-state symmetric supercapacitor vol.5, pp.19, 2016, https://doi.org/10.1039/d1se00074h