DOI QR코드

DOI QR Code

Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies

  • Pawar, Radheshyam R. (Department of Energy and Environment Convergence Technology, Catholic Kwandong University) ;
  • Lalhmunsiama, Lalhmunsiama (Department of Environmental Engineering, Catholic Kwandong University) ;
  • Bajaj, Hari C. (Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI)) ;
  • Lee, Seung-Mok (Department of Energy and Environment Convergence Technology, Catholic Kwandong University)
  • Received : 2015.09.02
  • Accepted : 2015.11.19
  • Published : 2016.02.25

Abstract

In this study, the effects of acid activation with high bentonite contents under mild synthetic conditions on textural and structural properties were explored. The alteration features after activation were fully characterized with the help of X-ray powder diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area, Barrett-Joyner-Halenda (BJH) pore size and volume analyses. The active sites were examined using volumetric titration and confirmed with a pyridine adsorbed FT-IR study. The activated bentonite (ABn) was further utilized for the removal of Cu(II) and Pb(II) ions from aqueous solutions. Batch reactor studies showed that the removal of these toxic metal ions was favored by increases in the pH, initial metal concentrations, contact time, and dose of the adsorbents. The equilibrium data obtained at various initial concentrations reasonably fit well with the Langmuir and Freundlich adsorption isotherms. The adsorption process was fast and the kinetic data fit better to the pseudo-second order kinetic model. The presence of other heavy metal ions, such as Cd(II), Fe(II), and Mn(II), did not significantly suppress the removal of both the Cu(II) and Pb(II); whereas the other cations, such as $Na^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ caused a notable decrease in the Pb(II) removal. In addition, the breakthrough data obtained in the column studies fit well with the non-linear Thomas equation, and high loading capacities of Cu(II) and Pb(II) were obtained. Therefore, we demonstrated in this study that the low cost 'ABn' solid can be employed as a potential adsorbent for the effective treatment of aqueous waste contaminated with Cu(II) and Pb(II).

Keywords

Acknowledgement

Supported by : Ministry of Environment

References

  1. D. Zhou, D.-G. Kim, S.-O. Ko, J. Ind. Eng. Chem. 24 (2015) 132, http://dx.doi.org/10.1016/j.jiec.2014.09.020.
  2. S.M. Lee, Lalhmunsiama, D. Tiwari, Environ. Sci. Pollut. Res. Int. 21 (5) (2014) 3686, http://dx.doi.org/10.1007/s11356-013-2310-9.
  3. E. Demirbas, N. Dizge, M.T. Sulak, M. Kobya, Chem. Eng. J. 148 (2-3) (2009) 480, http://dx.doi.org/10.1016/j.cej.2008.09.027.
  4. D. Jellouli Ennigrou, M. Ben Sik Ali, M. Dhahbi, Desalination 343 (2014) 82, http://dx.doi.org/10.1016/j.desal.2013.11.006.
  5. M.R. Awual, M. Ismael, M.A. Khaleque, T. Yaita, J. Ind. Eng. Chem. 20 (4) (2014) 2332, http://dx.doi.org/10.1016/j.jiec.2013.10.009.
  6. Lalhmunsiama, S.M. Lee, D. Tiwari, Chem. Eng. J. 225 (2013) 128, http://dx.doi.org/10.1016/j.cej.2013.03.083.
  7. H. Lalhruaitluanga, K. Jayaram, M.N.V. Prasad, K.K. Kumar, J. Hazard. Mater. 175 (1-3) (2010) 311, http://dx.doi.org/10.1016/j.jhazmat.2009.10.005.
  8. H. Mazaheri, M. Ghaedi, S. Hajati, K. Dashtian, M.K. Purkait, RSC Adv. 5 (101) (2015) 83427, http://dx.doi.org/10.1039/C5RA06731F.
  9. R.A.S.A. Salem, Chem. Eng. J. 174 (2) (2011) 619, http://dx.doi.org/10.1016/j.cej.2011.09.075.
  10. G.D. Vukovic, A.D. Marinkovic, S.D. Skapin, M.D. Ristic, R. Aleksic, A.A. Peric-Grujic, P.S. Uskokovic, Chem. Eng. J. 173 (3) (2011) 855, http://dx.doi.org/10.1016/j.cej.2011.08.036.
  11. M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, Spectrochim. Acta, A: Mol. Biomol. Spectrosc. 122 (2014) 223, http://dx.doi.org/10.1016/j.saa.2013.10.116.
  12. M. Jamshidi, M. Ghaedi, K. Dashtian, A.M. Ghaedi, S. Hajati, A. Goudarzi, E. Alipanahpour, Spectrochim. Acta, A: Mol. Biomol. Spectrosc. 153 (2015) 257, http://dx.doi.org/10.1016/j.saa.2015.08.024.
  13. M. Jamshidi, M. Ghaedi, K. Dashtian, S. Hajati, A. Bazrafshan, RSC Adv. 5 (73) (2015) 59522, http://dx.doi.org/10.1039/C5RA10981G.
  14. F.N. Azad, M. Ghaedi, K. Dashtian, M. Montazerozohori, S. Hajati, E. Alipanahpour, RSC Adv. 5 (75) (2015) 61060, http://dx.doi.org/10.1039/C5RA08746E.
  15. K.G. Bhattacharyya, S.S. Gupta, Adv. Colloid Interface Sci. 140 (2) (2008) 114, http://dx.doi.org/10.1016/j.cis.2007.12.008.
  16. A.S. Bhatt, P.L. Sakaria, M. Vasudevan, R.R. Pawar, N. Sudheesh, H.C. Bajaj, H.M. Mody, RSC Adv. 2 (23) (2012) 8663, http://dx.doi.org/10.1039/C2RA20347B.
  17. H.A. Patel, G.V. Joshi, R.R. Pawar, H.C. Bajaj, R.V. Jasra, Polym. Compos. 31 (3) (2010) 399, http://dx.doi.org/10.1002/pc.20816.
  18. Y.D. Suowei Wang, Appl. Clay Sci. 43 (2) (2009) 164, http://dx.doi.org/10.1016/j.clay.2008.07.028.
  19. J.-P. Suuronen, M. Matusewicz, M. Olin, R. Serimaa, Appl. Clay Sci. 101 (2014) 401, http://dx.doi.org/10.1016/j.clay.2014.08.015.
  20. A.R. Kul, H. Koyuncu, J. Hazard. Mater. 179 (1-3) (2010) 332, http://dx.doi.org/10.1016/j.jhazmat.2010.03.009.
  21. M.F. Brigatti, E. Galan, B.K.G. Theng, in: B.K.G.T. Faiza Bergaya, L. Gerhard (Eds.), Developments in Clay Science, vol. 1, Elsevier, 2006, pp. 19-86 http://dx.doi.org/10.1016/S1572-4352(05)01000.
  22. S.M. Lee, D. Tiwari, Appl. Clay Sci. 59-60 (2012) 84, http://dx.doi.org/10.1016/j.clay.2012.02.006.
  23. Lalhmunsiama, D. Tiwari, S.-M. Lee, J. Environ. Radioact. 147 (2015) 76, http://dx.doi.org/10.1016/j.jenvrad.2015.05.017.
  24. Y.Z. Hao Chen, J. Hazard. Mater. 149 (2) (2007) 346, http://dx.doi.org/10.1016/j.jhazmat.2007.03.085.
  25. B.J. Manjot Toor, J. Ind. Eng. Chem. 21 (2015) 653, http://dx.doi.org/10.1016/j.jiec.2014.03.033.
  26. J. Komadel, B.K.G.T. Madejova, in: G.L. Faiza Bergaya (Ed.), Developments in Clay Science, vol. 1, Elsevier, 2006, p. 263 http://dx.doi.org/10.1016/S1572-4352(05)01008-1.
  27. H. Noyan, M. Onal, Y. Sarikaya, Food Chem. 105 (1) (2007) 156, http://dx.doi.org/10.1016/j.foodchem.2007.03.060.
  28. G. Jozefaciuk, G. Bowanko, Clays Clay Miner. 50 (2002) 771, http://dx.doi.org/10.1346/000986002762090308.
  29. V.F.R. Diaz, P.de.S. Santos, Quim. Nova 24 (3) (2001) 345, http://dx.doi.org/10.1590/S0100-40422001000300011.
  30. R.R. Pawar, K.A. Gosai, A.S. Bhatt, S. Kumaresan, S.M. Lee, H.C. Bajaj, RSC Adv. 5 (102) (2015) 83985, http://dx.doi.org/10.1039/C5RA15817F.
  31. P. Kumar, R.V. Jasra, T.S.G. Bhat, Ind. Eng. Chem. Res. 34 (4) (1995) 1440, http://dx.doi.org/10.1021/ie00043a053.
  32. M.F.C.N. Rhodes, J. Chem. Soc. Chem. Commun. 12 (12) (1991), http://dx.doi.org/10.1039/c39910000804.
  33. J. Rivera-Utrilla, I. Bautista-Toledo, M.A. Ferro-Garcia, C. Moreno-Castilla, J. Chem. Technol. Biotechnol. 76 (12) (2001) 1209, http://dx.doi.org/10.1002/jctb.506.
  34. F. Sadik, J.H. Fincher, C.W. Hartman, J. Pharm. Sci. 60 (6) (1971) 916. https://doi.org/10.1002/jps.2600600624
  35. W.P. Gates, in: B.K.G.T. Faiza Bergaya, L. Gerhard (Eds.), Developments in Clay Science, vol.1, Elsevier, 2006, pp. 789-864.
  36. P. Falaras, I. Kovanis, F. Lezou, G. Seiragakis, Clay Miner. 34 (2) (1999) 221, http://dx.doi.org/10.1180/000985599546181.
  37. M. Onal, Y. Sarikaya, Powder Technol. 172 (1) (2007) 14, http://dx.doi.org/10.1016/j.powtec.2006.10.034.
  38. S. Petit, Dev. Clay Sci. 1 (2006), http://dx.doi.org/10.1016/S1572-4352(05)01032-9.
  39. G.V. Joshi, R.R. Pawar, B.D. Kevadiya, H.C. Bajaj, Microporous Mesoporous Mater. 142 (2-3) (2011) 542, http://dx.doi.org/10.1016/j.micromeso.2010.12.040.
  40. R.R. Pawar, B.D. Kevadiya, H. Brahmbhatt, H.C. Bajaj, Int. J. Pharm. 446 (1-2) (2013) 145, http://dx.doi.org/10.1016/j.ijpharm.2013.02.021.
  41. L.J. Michot, F. Villieras, in: B.K.G.T., G.L. Faiza Bergaya (Eds.), Developments in Clay Science, vol. 1, Elsevier, 2006, p. 965 http://dx.doi.org/10.1016/S1572-4352(05)01035-4.
  42. S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, Water Res. 33 (11) (1999) 2469, http://dx.doi.org/10.1016/S0043-1354(98)00475-8.
  43. M. Toor, B. Jin, S. Dai, V. Vimonses, J. Ind. Eng. Chem. 21 (2015) 653, http://dx.doi.org/10.1016/j.jiec.2014.03.033.
  44. M. Toor, B. Jin, Chem. Eng. J. 187 (2012) 79, http://dx.doi.org/10.1016/j.cej.2012.01.089.
  45. L. Vilcocq, V. Spinola, P. Moniz, L.C. Duarte, F. Carvalheiro, C. Fernandes, P. Castilho, Catal. Sci. Technol. 5 (8) (2015) 4072, http://dx.doi.org/10.1039/C5CY00195A.
  46. M. Liu, L. Hou, B. Xi, Y. Zhao, X. Xia, Appl. Surf. Sci. 273 (100) (2013) 706, http://dx.doi.org/10.1016/j.apsusc.2013.02.116.
  47. S.-M. Lee, C. Laldawngliana, D. Tiwari, Chem. Eng. J. 195-196 (2012) 103, http://dx.doi.org/10.1016/j.cej.2012.04.075.
  48. D. Tiwari, Lalhmunsiama, S.-M. Lee, Desalin. Water Treat. 53 (6) (2015) 1591. https://doi.org/10.1080/19443994.2013.855671
  49. D. Tiwari, H.-U. Kim, S.-M. Lee, Sep. Purif. Technol. 57 (1) (2007) 11, http://dx.doi.org/10.1016/j.seppur.2007.03.005.
  50. I. Langmuir, J. Am. Chem. Soc. 40 (9) (1918) 1361, http://dx.doi.org/10.1021/ja02242a004.
  51. M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, J. Ind. Eng. Chem. 20 (1) (2014) 17, http://dx.doi.org/10.1016/j.jiec.2013.04.031.
  52. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156 (1) (2010) 2, http://dx.doi.org/10.1016/j.cej.2009.09.013.
  53. H. Freundlich, J. Phys. Chem. 40 (6) (1935) 857, http://dx.doi.org/10.1021/j150375a022.
  54. M. Imamoglu, O. Tekir, Desalination 228 (1-3) (2008) 108, http://dx.doi.org/10.1016/j.desal.2007.08.011.
  55. A. Kamari, S.N.M. Yusoff, F. Abdullah, W.P. Putra, J. Environ. Chem. Eng. 2 (4) (2014) 1912, http://dx.doi.org/10.1016/j.jece.2014.08.014.
  56. M. Moyo, U. Guyo, G. Mawenyiyo, N.P. Zinyama, B.C. Nyamunda, J. Ind. Eng. Chem. 27 (2015) 126, http://dx.doi.org/10.1016/j.jiec.2014.12.026.
  57. A. Dehghan Monfared, M.H. Ghazanfari, M. Jamialahmadi, A. Helalizadeh, Chem. Eng. J. 281 (2015) 334, http://dx.doi.org/10.1016/j.cej.2015.06.104.
  58. W.J. Weber, J.C. Morris, J. Sanit. Eng. Div. 89 (2) (1963) 31.
  59. Lalhmunsiama, D. Tiwari, S.-M Lee, Chem. Eng. J. 283 (2016) 1414, http://dx.doi.org/10.1016/j.cej.2015.08.072.
  60. D.H.K. Reddy, K. Seshaiah, A.V.R. Reddy, M.M. Rao, M.C. Wang, J. Hazard. Mater. 174 (1-3) (2010) 831, http://dx.doi.org/10.1016/j.jhazmat.2009.09.128.
  61. S.M. Lee, Lalhmunsiama, Thanhmingliana, Tiwari, Chem. Eng. J. 270 (2015) 496, http://dx.doi.org/10.1016/j.cej.2015.02.053.
  62. H.C. Thomas, J. Am. Chem. Soc. 66 (10) (1944) 1664, http://dx.doi.org/10.1021/ja01238a017.

Cited by

  1. Removal of Cu(II) from Water Samples Using Glycidyl Methacrylate-Based Polymer Functionalized with Diethylenetriamine Tetraacetic Acid: Investigation of Adsorption Characteristics vol.227, pp.7, 2016, https://doi.org/10.1007/s11270-016-2943-7
  2. Al-intercalated acid activated bentonite beads for the removal of aqueous phosphate vol.572, pp.None, 2016, https://doi.org/10.1016/j.scitotenv.2016.08.040
  3. Polyamine Functionalized Magnetite Nanoparticles as Novel Adsorbents for Cu(II) Removal from Aqueous Solutions vol.27, pp.2, 2016, https://doi.org/10.1007/s10904-016-0491-7
  4. Thin film nanocomposite (TFN) hollow fiber membranes incorporated with functionalized acid-activated bentonite (ABn-NH) clay: towards enhancement of water vapor permeance and selectivity vol.5, pp.39, 2016, https://doi.org/10.1039/c7ta04945e
  5. Identification of natural zeolite from Sukabumi, West Java, Indonesia: structure, chemical composition, morphology and molecular vibration vol.4, pp.6, 2016, https://doi.org/10.1088/2053-1591/aa731d
  6. Empirical modeling and CCD-based RSM optimization of Cd(II) adsorption from aqueous solution on clinoptilolite and bentonite vol.90, pp.6, 2016, https://doi.org/10.1134/s1070427217060210
  7. Biosorption of lead ions from aqueous effluents by rapeseed biomass vol.39, pp.1, 2017, https://doi.org/10.1016/j.nbt.2016.08.002
  8. Kinetic, isotherm and thermodynamic studies with linear and non-linear fitting for cadmium(II) removal by black carbon of pine cone vol.76, pp.8, 2016, https://doi.org/10.2166/wst.2017.375
  9. Zinc oxide/graphene-like tungsten disulphide nanosheet photocatalysts: Synthesis and enhanced photocatalytic activity under visible-light irradiation vol.96, pp.5, 2016, https://doi.org/10.1002/cjce.23039
  10. Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution vol.35, pp.11, 2016, https://doi.org/10.1007/s11814-018-0140-7
  11. Adsorption Properties of Pb2+ by Amino Group’s Functionalized Montmorillonite from Aqueous Solutions vol.63, pp.8, 2018, https://doi.org/10.1021/acs.jced.8b00239
  12. Engineering β-ketoenol structure functionality in hybrid silica as excellent adsorbent material for removal of heavy metals from water vol.42, pp.16, 2016, https://doi.org/10.1039/c8nj01918e
  13. Adsorption behavior of magnetic bentonite for removing Hg(ii) from aqueous solutions vol.8, pp.48, 2016, https://doi.org/10.1039/c8ra05247f
  14. Preparation and Characterization of Dabco (1,4-Diazabicyclo [2.2.2]octane) modified bentonite: Application for Congo red removal vol.299, pp.None, 2018, https://doi.org/10.1088/1757-899x/299/1/012055
  15. A Review on Removal of Heavy Metal Ions from Waste Water using Natural/ Modified Bentonite vol.144, pp.None, 2016, https://doi.org/10.1051/matecconf/201814402021
  16. Enhanced copper removal from aqueous solution by hydrous TiO2/zeolite composite vol.117, pp.2, 2018, https://doi.org/10.1080/17436753.2017.1412034
  17. Sorption behavior of thorium(IV) onto activated bentonite vol.316, pp.1, 2016, https://doi.org/10.1007/s10967-018-5716-5
  18. Synthesis of citric acid-modified resins and their adsorption properties towards metal ions vol.5, pp.8, 2016, https://doi.org/10.1098/rsos.171667
  19. Synthesis of Nanobentonite as Heavy Metal Adsorbent with Various Solvents vol.34, pp.4, 2016, https://doi.org/10.13005/ojc/3404020
  20. Improved waste-sourced biocomposite for simultaneous removal of crude oil and heavy metals from synthetic and real oilfield-produced water vol.25, pp.31, 2016, https://doi.org/10.1007/s11356-018-3136-2
  21. Preparation, Characterization, and Application of Metakaolin-Based Geopolymer for Removal of Methylene Blue from Aqueous Solution vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/4212901
  22. Congo red dye removal from aqueous solution by acid-activated bentonite from sarolangun: kinetic, equilibrium, and thermodynamic studies vol.26, pp.1, 2016, https://doi.org/10.1080/25765299.2019.1576274
  23. Intercalation of Nanopolyaniline with Nanobentonite and Manganese Oxide Nanoparticles as a Novel Nanocomposite to Remediate Cobalt/Zinc and Their Radioactive Nuclides 60Co/65Zn vol.27, pp.2, 2016, https://doi.org/10.1007/s10924-018-1356-7
  24. Highly Selective Removal of Pb(II) by a Pyridylpyrazole-β-ketoenol Receptor Covalently Bonded onto the Silica Surface vol.4, pp.2, 2019, https://doi.org/10.1021/acsomega.8b03642
  25. Biosorption of Pb(II) ions onto Cocos nucifera leaf powder: Application of response surface methodology vol.38, pp.suppl1, 2016, https://doi.org/10.1002/ep.12945
  26. Calcined Umbonium vestiarium snail shell as an efficient adsorbent for treatment of wastewater containing Co (II) vol.9, pp.3, 2016, https://doi.org/10.1007/s13205-019-1575-1
  27. Dye-sensitized Photocatalyst of Sepiolite for Organic Dye Degradation vol.9, pp.3, 2016, https://doi.org/10.3390/catal9030235
  28. The adsorption behavior of multiple contaminants like heavy metal ions and p-nitrophenol on organic-modified montmorillonite vol.26, pp.10, 2016, https://doi.org/10.1007/s11356-019-04459-w
  29. Biosorption of cadmium by potential probiotic Pediococcus pentosaceus using in vitro digestion model vol.66, pp.4, 2016, https://doi.org/10.1002/bab.1783
  30. Physicochemical characterization of new natural clay from south west of Algeria: Application to the elimination of malachite green dye vol.38, pp.4, 2019, https://doi.org/10.1002/ep.13152
  31. Surface modification of low-cost bentonite adsorbents-A review vol.37, pp.5, 2016, https://doi.org/10.1080/02726351.2018.1438548
  32. Acid‐treated Bentonite as filler in the development of novel composite PVA hydrogels vol.136, pp.25, 2016, https://doi.org/10.1002/app.47663
  33. Selective Confinement of CdII in Silica Particles Functionalized with β‐Keto‐Enol‐Bisfuran Receptor: Isotherms, Kinetic and Thermodynamic Studies vol.2019, pp.27, 2016, https://doi.org/10.1002/ejic.201801349
  34. Synthesis of Saponite Based Nanocomposites to Improve the Controlled Oral Drug Release of Model Drug Quinine Hydrochloride Dihydrate vol.12, pp.3, 2016, https://doi.org/10.3390/ph12030105
  35. Preparation of Economical and Environmentaly Friendly Modified Clay and Its Application for Copper Removal vol.41, pp.6, 2019, https://doi.org/10.3103/s1063455x19060031
  36. The potential of semi-permeable bentonite and zeolite composite on the reduction of Pb (II) concentration in landfill vol.148, pp.None, 2020, https://doi.org/10.1051/e3sconf/202014801005
  37. Bentonites as a Copper Adsorbent: Equilibrium, pH, Agitation, Dose, and Kinetic Effect Studies vol.24, pp.1, 2016, https://doi.org/10.1061/(asce)hz.2153-5515.0000476
  38. Probing the interaction effects of metal ions in MnxFe(3−x)O4 on arsenite oxidation and adsorption vol.10, pp.5, 2016, https://doi.org/10.1039/c9ra09543h
  39. Ouw Natural Clay-Titanium Oksida (LaO-TiO2) Composite Adsorption Ability On Lead (Pb) Metal vol.1463, pp.None, 2016, https://doi.org/10.1088/1742-6596/1463/1/012011
  40. Competitive adsorption of naphthalene and phenanthrene on walnut shell based activated carbon and the verification via theoretical calculation vol.10, pp.18, 2016, https://doi.org/10.1039/c9ra09447d
  41. The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media vol.27, pp.12, 2016, https://doi.org/10.1007/s11356-020-07756-x
  42. Binary adsorption of Cu(II) and Ni(II) on Lai'yang bentonite: Kinetics, equilibrium, competition quantitative and mechanisms investigation vol.39, pp.3, 2016, https://doi.org/10.1002/ep.13358
  43. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution vol.27, pp.26, 2016, https://doi.org/10.1007/s11356-020-09267-1
  44. Influence of lead and copper on behavioural changes of compacted bentonite vol.9, pp.2, 2021, https://doi.org/10.3208/jgssp.v09.cpeg041
  45. Fixed-Bed Adsorption of Ciprofloxacin onto Bentonite Clay: Characterization, Mathematical Modeling, and DFT-Based Calculations vol.60, pp.10, 2016, https://doi.org/10.1021/acs.iecr.0c05700
  46. Adsorption and Hydraulic Conductivity Studies on Bentonite in Presence of Copper Solution vol.25, pp.2, 2016, https://doi.org/10.1061/(asce)hz.2153-5515.0000588
  47. Recent developments in layer-by-layer assembled systems application in water purification vol.270, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2020.129477
  48. Influence of real and synthetic municipal solid waste leachates on consolidation and shear strength behaviour of bentonites vol.28, pp.24, 2016, https://doi.org/10.1007/s11356-021-12863-4
  49. Impact of adding activated bentonite to thermally aged ester‐based TiO 2 nanofluids on insulation performance vol.4, pp.2, 2016, https://doi.org/10.1049/nde2.12010
  50. Preparation of Chitosan/Calcium Alginate/Bentonite Composite Hydrogel and Its Heavy Metal Ions Adsorption Properties vol.13, pp.11, 2016, https://doi.org/10.3390/polym13111891
  51. Preparation and Characterization of Acid-Activated Bentonite with Binary Acid Solution and Its Use in Decreasing Electrical Conductivity of Tap Water vol.11, pp.8, 2016, https://doi.org/10.3390/min11080815
  52. Modification of clinoptilolite with dialkylphosphinic acid for the selective removal of cobalt ( II ) and nickel ( II ) from hydrometallurgical effluent vol.99, pp.suppl1, 2016, https://doi.org/10.1002/cjce.24005
  53. Immobilized Na 2 WO 4 .2H 2 O on Arginine Modified Bentonite (Bentonite@L‐Arginine‐WO 3 ): An Efficient and Sustainable Catalyst for the C vol.6, pp.40, 2016, https://doi.org/10.1002/slct.202102183
  54. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment vol.812, pp.None, 2022, https://doi.org/10.1016/j.scitotenv.2021.152456
  55. Effect of Lead, Copper, and Zinc on Mechanical Properties of Compacted Bentonites vol.26, pp.2, 2016, https://doi.org/10.1061/(asce)hz.2153-5515.0000690