DOI QR코드

DOI QR Code

Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi2O3-bentonite nanocomposites: A kinetic study

  • Patil, Sandip P. (Nano-Chemistry Research Laboratory, G. T. Patil College) ;
  • Bethi, Bhaskar (Chemical Engineering Department, National Institute of Technology) ;
  • Sonawane, G.H. (Deptartment of Chemistry, Kisan Arts, Commerce and Science College) ;
  • Shrivastava, V.S. (Nano-Chemistry Research Laboratory, G. T. Patil College) ;
  • Sonawane, Shirish (Chemical Engineering Department, National Institute of Technology)
  • Received : 2015.04.20
  • Accepted : 2015.12.01
  • Published : 2016.02.25

Abstract

$Bi_2O_3$-bentonite nanocomposites successfully synthesized by intercalation method, are used for photocatalytic degradation of Rhodamine B (Rh B) under visible light irradiation. $Bi_2O_3$-bentonite shows enhanced photocatalytic efficiency than pure $Bi_2O_3$ due to intercalation with bentonite. Removal of Rh B is achieved upto 98.5% using $3gL^{-1}$ photocatalyst at pH 3. It is found that increase in light absorption and decrease in electron-hole recombination enhances photocatalytic efficiency. Photocatalytic degradation of Rh B by $Bi_2O_3$-bentonite proceeds via advanced oxidative process. The plausible mechanism of photocatalytic degradation Rh B reported by LC-MS shows generation of different degradation products including benzoic acid and benzonium ion.

Keywords

References

  1. X. Li, Q. Wang, Y. Zhao, W. Wu, J. Chen, H. Meng, J. Colloid Interface Sci. 411 (2013) 69-75. https://doi.org/10.1016/j.jcis.2013.08.050
  2. W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, J. Hazard. Mater. 173 (2010) 194-199. https://doi.org/10.1016/j.jhazmat.2009.08.068
  3. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170 (2009) 520-529. https://doi.org/10.1016/j.jhazmat.2009.05.039
  4. S. Dong, Y. Cui, Y. Wang, Y. Li, L. Hu, J. Sun, J. Sun, Chem. Eng. J 249 (2014) 102-110. https://doi.org/10.1016/j.cej.2014.03.071
  5. P. Chatchai, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 94 (2013) 314-319. https://doi.org/10.1016/j.electacta.2013.01.152
  6. S. Ameen, M.S. Akhtar, H.-K. Seo, H.-S. Shin, Mater. Lett. 113 (2013) 20-24. https://doi.org/10.1016/j.matlet.2013.09.004
  7. A.G.S. Prado, L.B. Bolzon, C.P. Pedroso, A.O. Moura, L.L. Costa, Appl. Catal., B 82 (2008) 219-224. https://doi.org/10.1016/j.apcatb.2008.01.024
  8. C. Xu, H. Wu, F.L. Gu, J. Hazard. Mater. 275 (2014) 185-192. https://doi.org/10.1016/j.jhazmat.2014.04.064
  9. M. Roosta, M. Ghaedi, A. Daneshfar, S. Darafarin, R. Sahraei, M.K. Purkait, Ultrason. Sonochem. 21 (2014) 1441-1450. https://doi.org/10.1016/j.ultsonch.2014.01.018
  10. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal., A 359 (2009) 25-40. https://doi.org/10.1016/j.apcata.2009.02.043
  11. I.K. Konstantinou, T.A. Albanis, Appl. Catal., B 49 (2004) 1-14. https://doi.org/10.1016/j.apcatb.2003.11.010
  12. H. Zollinger (Ed.), Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd revised ed., VCH, 1991.
  13. W.Z. Tang, H. An, Chemosphere 31 (1995) 4158-4170.
  14. U. Md. Amir, A. Kurtan, Baykal, J. Ind. Eng. Chem 27 (2015) 347-353. https://doi.org/10.1016/j.jiec.2015.01.013
  15. S. Meshram, R. Limaye, S. Ghodke, S. Nigam, S. Sonawane, R. Chikate, Chem. Eng. J. 172 (2011) 1008-1015. https://doi.org/10.1016/j.cej.2011.07.015
  16. A.D. Paola, E. Garcia-Lopez, G. Marci, L. Palmisano, J. Hazard. Mater. 211-212 (2012) 3-29. https://doi.org/10.1016/j.jhazmat.2011.11.050
  17. M. Safari, M. Nikazar, M. Dadvar, J. Ind. Eng. Chem. 19 (2013) 1697-1702. https://doi.org/10.1016/j.jiec.2013.02.008
  18. M. Aleksic, H. Kusic, N. Koprivanac, D. Leszczynska, A.L. Bozic, Desalination 257 (2010) 22-29. https://doi.org/10.1016/j.desal.2010.03.016
  19. G. Panthi, M. Park, H-Y. Kim, S.-Y. Lee, S-J. Park, J. Ind. Eng. Chem. 21 (2015) 26-35. https://doi.org/10.1016/j.jiec.2014.03.044
  20. J.S. Lee, J. Jang, J. Ind. Eng. Chem. 20 (2014) 363-371. https://doi.org/10.1016/j.jiec.2013.11.050
  21. S.P. Patil, V.S. Shrivastava, G.H. Sonawane, Desalin. Water Treat. 54 (2015) 374-381. https://doi.org/10.1080/19443994.2014.883334
  22. U. Riaz, S.M. Ashraf, A. Ruhela, J. Environ. Chem. Eng. 3 (2015) 20-29. https://doi.org/10.1016/j.jece.2014.06.010
  23. D. Hamane, O. Arous, F. Kaouah, M. Trari, H. Kerdjoudj, Z. Bendjama, J. Environ. Chem. Eng. 3 (2015) 60-69. https://doi.org/10.1016/j.jece.2014.11.003
  24. X. Liu, L. Pan, T. Lv, Z. Sun, C.Q. Sun, J. Colloid Interface Sci 408 (2013) 145-150. https://doi.org/10.1016/j.jcis.2013.07.045
  25. N. Pugazhenthiran, P. Sathishkumar, S. Murugesan, S. Anandan, Chem. Eng. J 168 (2011) 1227-1233. https://doi.org/10.1016/j.cej.2011.02.020
  26. Y. Lu, X.Y. He, J.B. Zhong, J.Z. Li, W. Hu, Adv. Mater. Res. 418-420 (2012) 554-557.
  27. S. Anandan, G.-J. Lee, P.-K. Chen, C. Fan, J.J. Wu, Ind. Eng. Chem. Res. 49 (2010) 9729-9737. https://doi.org/10.1021/ie101361c
  28. X.Y. He, J.Z. Li, J.B. Zhong, W. Hu, Appl. Mech. Mater. 178-181 (2012) 641-644. https://doi.org/10.4028/www.scientific.net/AMM.178-181.641
  29. C. Pan, Y. Yan, H. Li, S. Hu, Adv. Mater. Res. 557-559 (2012) 615-618. https://doi.org/10.4028/www.scientific.net/AMR.557-559.615
  30. S. Sonawane, P. Chaudhari, S. Ghodke, S. Ambade, S. Gulig, A. Mirikar, A. Bane, Ultrason. Sonochem. 15 (2008) 1033-1037. https://doi.org/10.1016/j.ultsonch.2008.03.006
  31. H. Zhang, Y.J. Ji, X.Y. Ma, J. Xu, D.R. Yang, Nanotechnology 14 (2003) 974-977. https://doi.org/10.1088/0957-4484/14/9/307
  32. A.P. Zhang, J.Z. Zhang, N.Y. Cui, X.Y. Tie, Y.W. An, L.J. Li, J. Mol. Catal. A: Chem. 304 (2009) 28-32. https://doi.org/10.1016/j.molcata.2009.01.019
  33. G.H. Sonawane, V.S. Shrivastava, Desalination 247 (2009) 430-441. https://doi.org/10.1016/j.desal.2009.01.006
  34. S. Vadivel, M. Vanitha, A. Muthukrishnaraj, N. Balasubramanian, J. Water Process Eng 1 (2014) 17-26. https://doi.org/10.1016/j.jwpe.2014.02.003
  35. W. Zhang, F. Dong, T. Xiong, Q. Zhang, Ceram. Int. 40 (2014) 9003-9008. https://doi.org/10.1016/j.ceramint.2014.01.112
  36. J. Hong, S. Lu, C. Zhang, S. Qi, Y. Wang, Chemosphere 84 (2011) 1542-1547. https://doi.org/10.1016/j.chemosphere.2011.05.056
  37. D. Maruthamani, D. Divakar, M. Kumaravel, J. Ind. Eng. Chem. 30 (2015) 33-43. https://doi.org/10.1016/j.jiec.2015.04.026
  38. M.A. Rauf, S.S. Ashraf, Chem. Eng. J 151 (2009) 10-18. https://doi.org/10.1016/j.cej.2009.02.026
  39. S. Tanaka, U.K. Saha, Water Sci. Technol. 30 (1994) 47-57.
  40. P.P. Gan, S.F.Y. Li, Chem. Eng. J 229 (2013) 351-363. https://doi.org/10.1016/j.cej.2013.06.020
  41. D. Zhang, R. Qiu, L. Song, B. Eric, Y. Mo, X. Huang, J. Hazard. Mater. 163 (2009) 843-847. https://doi.org/10.1016/j.jhazmat.2008.07.036
  42. H. Park, W. Choi, J. Phys. Chem. B 108 (2004) 4086-4093. https://doi.org/10.1021/jp036735i
  43. T.M. El-morsi, W.R. Budakowski, A.S. Abd-el-aziz, K.J. Friesen, Environ. Sci. Technol. 34 (2000) 1018-1022. https://doi.org/10.1021/es9907360
  44. P. Calza, E. Pelizzetti, Pure Appl. Chem. 73 (2001) 1839-1848. https://doi.org/10.1351/pac200173121839
  45. Y.X. Chen, S.Y. Yang, K. Wang, L.P. Lou, J. Photochem. Photobiol. A 172 (2005) 47-54. https://doi.org/10.1016/j.jphotochem.2004.11.006

Cited by

  1. Preparation and adsorption capacity of porous MoS2nanosheets vol.6, pp.107, 2016, https://doi.org/10.1039/c6ra22414h
  2. 입상 활성탄에 의한 Rhodamin-B의 흡착 열역학, 동력학 및 등량 흡착열에 관한 연구 vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1015
  3. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA) vol.7, pp.6, 2017, https://doi.org/10.3390/nano7060134
  4. Facile in Situ Growth of High Strong BiOI Network Films on Metal Wire Meshes with Photocatalytic Activity vol.5, pp.3, 2016, https://doi.org/10.1021/acssuschemeng.6b02810
  5. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives vol.39, pp.None, 2016, https://doi.org/10.1016/j.ultsonch.2017.05.019
  6. Synthesis and implication of novel poly(acrylic acid)/nanosorbent embedded hydrogel composite for lead ion removal vol.7, pp.None, 2016, https://doi.org/10.1038/s41598-017-15642-9
  7. Effect of pH on the phase transformation of strontium titanium materials and their photocatalytic property vol.29, pp.22, 2016, https://doi.org/10.1007/s10854-018-0061-6
  8. Constructing novel Bi2SiO5-Bi2O3 hybrid loaded sepiolite with enhanced visible light photocatalytic activity vol.29, pp.8, 2016, https://doi.org/10.1007/s10854-018-8611-5
  9. Review on nanoscale Bi-based photocatalysts vol.3, pp.5, 2016, https://doi.org/10.1039/c8nh00062j
  10. In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) degradation vol.456, pp.None, 2016, https://doi.org/10.1016/j.apsusc.2018.06.009
  11. Efficient photocatalytic removal of safarnin-O dye pollutants from water under sunlight using synthetic bentonite/polyaniline@Ni2O3 photocatalyst of enhanced properties vol.25, pp.33, 2016, https://doi.org/10.1007/s11356-018-3270-x
  12. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis vol.12, pp.4, 2016, https://doi.org/10.1007/s11705-018-1744-5
  13. Construction, enhanced visible-light photocatalytic activity and application of multiple complementary Ag dots decorated onto Ag2MoO4/AZO hybrid nanocomposite vol.45, pp.2, 2019, https://doi.org/10.1007/s11164-018-3649-9
  14. A TiO2/crosslinked carboxymethyl starch composite for high-efficiency adsorption and photodegradation of cationic golden yellow X-GL dye vol.26, pp.24, 2016, https://doi.org/10.1007/s11356-019-05685-y
  15. Environmentally friendly decolorization of textile dye C.I. yellow 28 in water by Bi2−x(Lu, Er)xO3 nanoparticles vol.30, pp.18, 2016, https://doi.org/10.1007/s10854-019-02064-8
  16. Use of bentonite calcined clay as an adsorbent: equilibrium and thermodynamic study of Rhodamine B adsorption in aqueous solution vol.26, pp.28, 2019, https://doi.org/10.1007/s11356-019-04641-0
  17. pH-responsive kinematics of photocatalytic degradation of Rh B with polypyrene microspheres vol.6, pp.10, 2016, https://doi.org/10.1088/2053-1591/ab4060
  18. Photocatalytic activity of exfoliated graphite-TiO2 nanoparticle composites vol.11, pp.41, 2016, https://doi.org/10.1039/c9nr06760d
  19. Synthesis of Magnetic Fe3S4/Bi2S3 for Photocatalytic Reduction of Hexavalent Chromium in Water vol.10, pp.11, 2016, https://doi.org/10.12677/ms.2020.1011109
  20. Synthesis of Spin Coated Tungsten Oxide for Photocatalytic Degradation of Rhodamine-B Dye vol.32, pp.7, 2016, https://doi.org/10.14233/ajchem.2020.22619
  21. Kinetic and Mechanistic Study of Rhodamine B Degradation by H2O2 and Cu/Al2O3/g-C3N4 Composite vol.10, pp.3, 2016, https://doi.org/10.3390/catal10030317
  22. Study of the Photocatalytic Activity Using Silica-Based Materials Doped with Silver Nanoparticles for Degradation of Rhodamine B Dye vol.231, pp.5, 2016, https://doi.org/10.1007/s11270-020-04553-7
  23. Photocatalytic degradation of methyl orange by Bi 20 TiO 32 -montmorillonite composite vol.15, pp.8, 2020, https://doi.org/10.1049/mnl.2020.0127
  24. Use of m-BiVO4/ZnFe2O4 composite materials for enhanced photocatalytic properties vol.9, pp.2, 2016, https://doi.org/10.1680/jsuin.19.00069
  25. Kinetic Studies on Electrochemical Degradation of Rhodamine B vol.43, pp.2, 2016, https://doi.org/10.3103/s1063455x21020132
  26. Identification of the Physicochemical Factors Involved in the Dye Separation via Methionine‐Functionalized Mesoporous Carbons vol.5, pp.6, 2016, https://doi.org/10.1002/adsu.202100013
  27. Vanadium oxide‐supported copper ferrite nanoparticles: A reusable and highly efficient catalyst for rhodamine B degradation via activation of peroxymonosulfate vol.35, pp.10, 2016, https://doi.org/10.1002/aoc.6367
  28. Influencing Factors in the Synthesis of Photoactive Nanocomposites of ZnO/SiO2-Porous Heterostructures from Montmorillonite and the Study for Methyl Violet Photodegradation vol.11, pp.12, 2016, https://doi.org/10.3390/nano11123427
  29. Preparation of Bi2O3/TiO2-Montmorillonite Nanocomposites and Their Applications to the Photodegradation of Pentachlorophenol vol.17, pp.1, 2016, https://doi.org/10.9767/bcrec.17.1.12421.78-87