DOI QR코드

DOI QR Code

Pore size distribution control of pitch-based activated carbon for improvement of electrochemical property

  • Cho, Eun-sam (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Bai, Byong Chol (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Seok (Department of Chemical and Biomolecular Engineering, Pusan National University)
  • Received : 2015.10.12
  • Accepted : 2016.01.12
  • Published : 2016.03.25

Abstract

Activated carbon has been prepared using coal tar pitch as a precursor with a simple NaOH activation process. The effect of the activation on the porosity and the specific surface area is characterized by nitrogen adsorption-desorption isotherms. The highest specific surface area of $1409.7m^2g^{-1}$ is obtained with a NaOH to pitch ratio of 6. Its specific capacitance is $287.43F\;g^{-1}$ at the scan rate $50mV\;s^{-1}$, $197.78F\;g^{-1}$ at the current density $1A\;g^{-1}$, and it has outstanding energy density of $16.34Wh\;kg^{-1}$. Thus, pitch-based AC is a promising material for various energy storage devices.

Keywords

Acknowledgement

Grant : BK21플러스

Supported by : 부산대학교

References

  1. E. Fitzer, K.H. Kochling, H. Marsh, Pure Appl. Chem. 67 (1995) 473-506. https://doi.org/10.1351/pac199567030473
  2. H. Marsh, E.A. Heintz, F. Rodriguez-Reinoso, Introduction to Carbon Technologies, Universidad de Alicante, Alicante, Spain, 1997.
  3. V.G. Rocha, M. Granda, R. Santamaria, C. Blanco, E.I. Diestre, R. Menendez, J. Anal. Appl. Pyrolysis 73 (2005) 276-283. https://doi.org/10.1016/j.jaap.2005.02.010
  4. V. Slovak, P. Susak, J. Anal. Appl. Pyrolysis 72 (2000) 249-252.
  5. S. Mitani, S. Lee, S. Yoon, Y. Korai, I. Mochida, J. Power Sources 133 (2004) 298-301. https://doi.org/10.1016/j.jpowsour.2004.01.047
  6. G. Grazyna, M. Jacek, L. Ewa, L. Grzegorz, F. Elzbieta, Electrochim. Acta 50 (2005) 1197-1206. https://doi.org/10.1016/j.electacta.2004.07.045
  7. T. Weng, H. Teng, J. Electrochem. Soc. 148 (2001) A368-A373. https://doi.org/10.1149/1.1357171
  8. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, S. Shi-raishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765-1775. https://doi.org/10.1016/S0008-6223(03)00141-6
  9. H. Shi, Electrochim. Acta 41 (1996) 1633-1639. https://doi.org/10.1016/0013-4686(95)00416-5
  10. D. Qu, H. Shi, J. Power Sources 74 (1998) 99-107. https://doi.org/10.1016/S0378-7753(98)00038-X
  11. Y. Guo, Z. Shi, M. Chen, C. Wang, J. Power Sources 252 (2014) 235-243. https://doi.org/10.1016/j.jpowsour.2013.11.114
  12. M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, Y.J. Chabal, ACS Nano 4 (2010) 5861-5868. https://doi.org/10.1021/nn101844t
  13. H.M. Zhu, J.H. Yan, X.G. Jiang, Y.E. Lai, K.F. Cen, J. Hazard. Mater. 153 (2008) 670-676. https://doi.org/10.1016/j.jhazmat.2007.09.011
  14. S. Kim, K. Lee, Chem. Phys. Lett. 400 (2004) 253-257. https://doi.org/10.1016/j.cplett.2004.10.124
  15. J.B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory, Elsevier, The Netherlands, 2006.
  16. H.-R. Yu, S. Cho, M.-J. Jung, Y.-S. Lee, Microporous Mesoporous Mater. 172 (2013) 131-135. https://doi.org/10.1016/j.micromeso.2013.01.018
  17. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313 (2006) 1760-1763. https://doi.org/10.1126/science.1132195
  18. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297 (2002) 787-792. https://doi.org/10.1126/science.1060928
  19. E. Frackowiak, J. Braz. Chem. Soc. 17 (2006) 1074-1082. https://doi.org/10.1590/S0103-50532006000600003
  20. E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, F. Beguin, Carbon 44 (2006) 2498-2507. https://doi.org/10.1016/j.carbon.2006.05.022
  21. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. 120 (2008) 379-382. https://doi.org/10.1002/ange.200702721
  22. S. Park, S. Kim, Electrochim. Acta 89 (2013) 516-522. https://doi.org/10.1016/j.electacta.2012.11.075
  23. Q. Zhang, Y. Li, Y. Feng, W. Feng, Electrochim. Acta 90 (2012) 95-100.
  24. K. Chen, D. Xue, J. Nanoeng. Nanomanuf. 4 (2014) 55.
  25. J. Yan, J. Liu, Z. Fan, T. Wei, L. Zhang, Carbon 50 (2012) 2179-2188. https://doi.org/10.1016/j.carbon.2012.01.028
  26. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Y. Yang, J. Power Sources 195 (2010) 2118-2124. https://doi.org/10.1016/j.jpowsour.2009.09.077

Cited by

  1. Role of surface fluorine in improving the electrochemical properties of Fe/MWCNT electrodes vol.43, pp.None, 2016, https://doi.org/10.1016/j.jiec.2016.07.050
  2. Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors vol.5, pp.30, 2016, https://doi.org/10.1039/c7ta02966g
  3. Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs vol.27, pp.None, 2016, https://doi.org/10.5714/cl.2018.27.112
  4. Layer-stacked graphite-like porous carbon for flexible all-solid-state supercapacitor vol.425, pp.None, 2016, https://doi.org/10.1016/j.cej.2021.130609