DOI QR코드

DOI QR Code

Development of sustainable elastomeric engineering nanocomposites from linseed oil with improved mechanical stability and thermally induced shape memory properties

  • Das, Rakesh (Department of Polymer Science and Technology, University of Calcutta) ;
  • Banerjee, Sovan Lal (Department of Polymer Science and Technology, University of Calcutta) ;
  • Kumar, Rajesh (Precision Metrology Laboratory, Department of Mechanical Engineering, Sant Longowal Institute of Engineering & Technology) ;
  • Kundu, P.P. (Department of Polymer Science and Technology, University of Calcutta)
  • Received : 2015.11.30
  • Accepted : 2016.01.22
  • Published : 2016.03.25

Abstract

The elastomeric nanocomposites having high mechanical stability and shape memory property were fabricated via in situ cationic polymerization of vegetable oil (linseed oil) in the presence of nano fly ash (NFA). The enhanced dynamic moduli and Young's modulus of nanocomposites with respect to matrix elastomers were witnessed. The vibration damping behavior of nanocomposites in wide frequency region, observed under a laboratory fabricated machine reveals their effectiveness to attenuate hazardous vibration in broad application regions. Under thermally stimulated shape memory test, the nanocomposites exhibit 100% shape recovery, and the shape recovery time improves when the content of NFA filler increases.

Keywords

Acknowledgement

Supported by : Council for Scientific and Industrial Research (CSIR)

References

  1. A.K. Mohanty, M. Misra, G. Hinrichen, Macromol. Mater. Eng. 276-277 (2000) 1. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  2. J.C. Ronda, G. Lligadas, M. Galia, V. Cadiz, Eur. J. Lipid Sci. Technol. 113 (2011) 46. https://doi.org/10.1002/ejlt.201000103
  3. S.S. Ray, M. Bousmina, Prog. Mater. Sci. 50 (2005) 962. https://doi.org/10.1016/j.pmatsci.2005.05.002
  4. P.B. Messermith, E.P. Giannelis, J. Polym. Sci. A: Polym. Chem. 33 (1995) 1047.
  5. M. Okamoto, Mater. Sci. Technol. Lond. 22 (2006) 756. https://doi.org/10.1179/174328406X101319
  6. V.C. Divya, V.V. Pattanshetti, R. Suresh, R.R.N. Sailaja, J. Polym. Res. 20 (2013) 51. https://doi.org/10.1007/s10965-012-0051-y
  7. E.P. Giannelis, Adv. Mater. 8 (1996) 29. https://doi.org/10.1002/adma.19960080104
  8. D.R. Paul, L.M. Robeson, Polymer 49 (2008) 3187. https://doi.org/10.1016/j.polymer.2008.04.017
  9. A.M. Youssef, Polym. Plast. Technol. 52 (2013) 52, 635. https://doi.org/10.1080/03602559.2012.762673
  10. H. Zou, S. Wu, J. Shen, Chem. Rev. 108 (2008) 3893. https://doi.org/10.1021/cr068035q
  11. Y. Lu, R.C. Larock, ChemSusChem 2 (2009) 136. https://doi.org/10.1002/cssc.200800241
  12. Y. Xia, R.C. Larock, Green Chem. 12 (2010) 1893. https://doi.org/10.1039/c0gc00264j
  13. S.N. Khot, J.J. Lascala, E. Can, S.S. Morye, G.I. Williams, G.R. Palmese, S.H. Kusefoglu, R.P. Wool, J. Appl. Polym. Sci. 82 (2001) 703. https://doi.org/10.1002/app.1897
  14. M.A. Mosiewicki, M.I. Aranguren, Eur. Polym. J. 49 (2013) 1243. https://doi.org/10.1016/j.eurpolymj.2013.02.034
  15. S.G. Tan, Z. Ahmad, W.S. Chow, Appl. Clay Sci. 90 (2014) 11. https://doi.org/10.1016/j.clay.2014.01.005
  16. Y. Lu, R.C. Larock, J. Appl. Polym. Sci. 102 (2006) 3345. https://doi.org/10.1002/app.24808
  17. M.M. Reddy, S. Vivekanandhan, M. Misra, S.K. Bhatia, A.K. Mohanty, Prog. Polym. Sci. 38 (2013) 1653. https://doi.org/10.1016/j.progpolymsci.2013.05.006
  18. D.P. Pfister, R.C. Larock, J. Appl. Polym. Sci. 123 (2012) 1392. https://doi.org/10.1002/app.33636
  19. R.L. Quirino, J. Woodford, R.C. Larock, J. Appl. Polym. Sci. 124 (2012) 1520. https://doi.org/10.1002/app.35161
  20. S.G. Pardo, C. Bernat, M.J. Abad, J. Caro, Polym. Compos. 31 (2010) 1722. https://doi.org/10.1002/pc.20962
  21. D. Ray, D. Bhattacharya, A.K. Mohanty, L.T. Drzal, M. Misra, Macromol. Mater. Eng. 291 (2006) 784. https://doi.org/10.1002/mame.200600097
  22. M. Maruzzaman, Prog. Energy Combust. Sci. 36 (2010) 327. https://doi.org/10.1016/j.pecs.2009.11.003
  23. R. Iyer, J. Hazard. Mater. 93 (2002) 321. https://doi.org/10.1016/S0304-3894(02)00049-3
  24. M.S. Sreekanth, S. Joseph, S.T. Mhaske, P.A. Mahanwar, V.A. Bambole, J. Thermoplast. Compos. Mater. 24 (2011) 317. https://doi.org/10.1177/0892705710389293
  25. M.V. Deepthi, M. Sharma, R.R.N. Sailaja, P. Anantha, P. Sampathkumaran, S. Seetharamu, Mater. Des. 31 (2010) 2051. https://doi.org/10.1016/j.matdes.2009.10.014
  26. S.M. Kulkarni, J. Mater. Sci. 37 (2002) 4321. https://doi.org/10.1023/A:1020648418233
  27. S. Thongsang, N. Sombatsompop, Polym. Compos. 27 (2006) 30. https://doi.org/10.1002/pc.20163
  28. S.M. Kishore, D. Kulkarni, S. Sunil, Sarathchandra, Polym. Int. 51 (2002) 1378. https://doi.org/10.1002/pi.1055
  29. Y. Yu-Fen, G. Guo-Shen, C. Zhen-Fang, C. Qing-Ru, J. Hazard. Mater. 133 (2000) 276.
  30. L.E. Nielson, Mechanical Properties of Polymer and Composites, 2nd ed., Marcel Dekker, New York, 1994.
  31. T. Xie, Polymer 52 (2011) 4985. https://doi.org/10.1016/j.polymer.2011.08.003
  32. H. Lu, W.M. Huang, Appl. Phys. Lett. 102 (2013) 231910. https://doi.org/10.1063/1.4811134
  33. B. Xu, W.M. Huang, Y.T. Pei, Z.G. Chen, A. Kraft, R. Reuben, J.Th.M. De Hosson, Y.Q. Fu, Eur. Polym. J. 45 (2009) 1904. https://doi.org/10.1016/j.eurpolymj.2009.04.004
  34. X.L. Wu, W.M. Huang, H.X. Tan, J. Polym. Res. 20 (2013) 150. https://doi.org/10.1007/s10965-013-0150-4
  35. F. Li, R.C. Larock, J. Appl. Polym. Sci. 84 (2002) 1533. https://doi.org/10.1002/app.10493
  36. C. Meiorin, M.I. Aranguren, M.A. Mosiewicki, Eur. Polym. J. 67 (2015) 67, 551. https://doi.org/10.1016/j.eurpolymj.2015.01.005
  37. T. Tsujimoto, H. Uyama, ACS Sustain. Chem. Eng. 2 (2014) 2057. https://doi.org/10.1021/sc500310s
  38. T. Tsujimoto, E. Ohta, H. Uyama, Express Polym. Lett. 9 (2015) 757. https://doi.org/10.3144/expresspolymlett.2015.71
  39. C. Zhang, S.A. Madbouly, M.R. Kessler, ACS Appl. Mater. Interfaces 7 (2015) 1226. https://doi.org/10.1021/am5071333
  40. A. Saralegi, E.J. Foster, C. Weder, A. Eceizaand, M.A. Corcuera, Smart Mater. Struct. 23 (2014) 025033. https://doi.org/10.1088/0964-1726/23/2/025033
  41. S. Thakur, N. Karak, J. Mater. Chem. A 2 (2014) 14867. https://doi.org/10.1039/C4TA02497D
  42. ASTM E756-05, Standard Test Method for Measuring Vibration-Damping Properties of Materials, American Society for Testing and Materials, 2010.
  43. B.H. Hameed, L.F. Lai, L.H. Chin, Fuel Process. Technol. 90 (2009) 606. https://doi.org/10.1016/j.fuproc.2008.12.014
  44. C.W. De Silva, Vibration Damping Control and Design, CRC Press, USA, 2007.
  45. M. Harris, A.G. Piersol, Harris' Shock and Vibration Handbook, McGraw-Hill, New York, 2002.
  46. K. Thomas Paul, S.K. Satpathy, I. Manna, K.K. Chakraborty, G.B. Nando, Nanoscale Res. Lett. 2 (2007) 397. https://doi.org/10.1007/s11671-007-9074-4
  47. N. Vlachos, Y. Skopelitis, M. Psaroudaki, V. Konstantinidou, A. Chatzilazarou, E. Tegou, Anal. Chim. Acta 573-574 (2006) 459. https://doi.org/10.1016/j.aca.2006.05.034
  48. G. Kumar, N. Nisha, S. Mageswari, K. Subramanian, J. Polym. Res. 18 (2011) 18, 241. https://doi.org/10.1007/s10965-010-9412-6
  49. R. Das, R. Kumar, S.L. Banerjee, P.P. Kundu, RSC Adv. 4 (2014) 59265. https://doi.org/10.1039/C4RA11797B
  50. T. Trakulsujaritchok, D.J. Hourston, Eur. Polym. J. 42 (2006) 2968. https://doi.org/10.1016/j.eurpolymj.2006.07.028
  51. D.D.L. Chung, J. Mater. Sci. 36 (2001) 5733. https://doi.org/10.1023/A:1012999616049
  52. H.F. Schnell, D. Goritz, E.J. Schmid, J. Mater. Sci. 26 (1991) 661. https://doi.org/10.1007/BF00588301
  53. D.L. Russel, Remarks on experimental determination of modal damping rates in elastic beams, in: G. Chen, J. Zhou (Eds.), Vibration and Damping in Distributed Systems - WKB and Wave Methods, Visualization and Experimentation, vol. 2, CRC Press, Tokyo, Japan, 1993 (Chapter 5).
  54. W.M. Huang, Y. Zhao, C.C. Wang, Z. Ding, H. Purnawali, C. Tang, J.L. Zhang, J. Polym. Res. 19 (2012) 9952. https://doi.org/10.1007/s10965-012-9952-z
  55. J. Karger-Kocsis, S. Keki, Express Polym. Lett. 8 (2014) 397. https://doi.org/10.3144/expresspolymlett.2014.44

Cited by

  1. 불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성 vol.27, pp.3, 2016, https://doi.org/10.14478/ace.2016.1033
  2. Structure and Properties of Epoxy/Fly Ash System: Influence of Filler Content and Surface Modification vol.28, pp.8, 2016, https://doi.org/10.1007/s11665-019-04215-8