DOI QR코드

DOI QR Code

Petrochemical-waste-derived high-performance anode material for Li-ion batteries

  • Ko, Seunghyun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (UST) 217 (KRICT)) ;
  • Lee, Chul Wee (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (UST) 217 (KRICT)) ;
  • Im, Ji Sun (C-Industry Incubation Center, Korea Research Institute of Chemical Technology (UST) 217 (KRICT))
  • Received : 2015.09.23
  • Accepted : 2016.01.27
  • Published : 2016.04.25

Abstract

To end the unsustainable disposal of pyrolysis fuel oil (PFO), which is a type of petrochemical waste, we investigate the use of PFO as a carbon source for soft carbon and evaluate it as an anode material for lithium-ion batteries. This material exhibites a much higher reversible capacity ($366.5mAh\;g^{-1}$) than that of commercial soft carbon ($236.4mAh\;g^{-1}$) and an extremly stable cyclability. The PFO-derived soft carbon retained 99.0% of its initial capacity after 100 cycles, and a rate capability test indicated that it retained a higher capacity at all investigated current densities compared with that of a commercial product. To further improve its lithium storage capacity, the PFO-derived soft carbon was composited with nano silicon. Notably, even after the composite was formed, the high rate capability was maintained. It was demonstrated that petrochemical waste can be converted into high-performance anode material, and this sustainable approach is readily applicable to the commercial production of anode material.

Keywords

Acknowledgement

Supported by : Ministry of Science, ICT and Future Planning of Korea

References

  1. https://www.innopolis.or.kr/attach/filedownloads/do_down/type/N/no/36811.
  2. L.C. Tom, D.J.S. Patinha, R. Ferreira, H. Garcia, C.S. Pereira, C.S.R. Freire, L.P.N. Rebelo, I.M. Marrucho, ChemSusChem 7 (2014) 110. https://doi.org/10.1002/cssc.201300613
  3. A.G. Kontos, V. Likodimos, C.M. Veziri, E. Kouvelos, N. Moustakas, G.N. Karanikolos, G.E. Romanos, P. Falaras, ChemSusChem 7 (2014) 1696. https://doi.org/10.1002/cssc.201301323
  4. G.A. Meehl, W.M. Washington, W.D. Collins, J.M. Arblaster, A. Hu, L.E. Buja, W.G. Strand, H. Teng, Science 307 (2005) 1769. https://doi.org/10.1126/science.1106663
  5. A. Varzia, C. Ramirez-Castro, A. Balducci, S. Passerini, J. Power Sources 273 (2015) 1016. https://doi.org/10.1016/j.jpowsour.2014.09.180
  6. H. Kawaura, D. Takamatsu, S. Mori, Y. Orikasa, H. Sugaya, H. Murayama, K. Nakanishi, H. Tanida, Y. Koyama, H. Arai, Y. Uchimoto, Z. Ogumi, J. Power Sources 245 (2014) 816. https://doi.org/10.1016/j.jpowsour.2013.07.011
  7. S. Ko, S.C. Lee, C.W. Lee, J.S. Im, J. Alloys Compd. 613 (2014) 96. https://doi.org/10.1016/j.jallcom.2014.06.059
  8. Y. Zhou, S. Ko, C.W. Lee, S.G. Pyo, S. Kim, S. Yoon, J. Power Sources 244 (2013) 777. https://doi.org/10.1016/j.jpowsour.2013.04.054
  9. B.G. Choi, M. Yang, S.C. Jung, K.G. Lee, J. Kim, H.S. Park, T.J. Park, S.B. Lee, Y. Han, Y.S. Huh, ACS Nano 7 (2013) 2453. https://doi.org/10.1021/nn305750s
  10. Y. Zhou, S. Yoon, Electrochem. Commun. 40 (2014) 54. https://doi.org/10.1016/j.elecom.2013.12.028
  11. B.G. Choi, S. Chang, Y.B. Lee, J.S. Bae, H.J. Kim, Y.S. Huh, Nanoscale 4 (2012) 5924. https://doi.org/10.1039/c2nr31438j
  12. Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nanoscale 4 (2010) 1294.
  13. A.S. Arico, P.B.B. Scrosati, J. Tarascon, W.V. Schalkwijk, Nat. Mater. 4 (2005) 366. https://doi.org/10.1038/nmat1368
  14. J. Kaspar, C. Terzioglu, E. Ionescu, M. Graczyk-Zajac, S. Hapis, H. Kleebe, R. Riedel, Adv. Funct. Mater. 24 (2014) 4097. https://doi.org/10.1002/adfm.201303828
  15. G.A. Zickler, B. Smarsly, N. Gierlinger, H. Peterlik, O. Paris, Carbon 44 (2006) 3239. https://doi.org/10.1016/j.carbon.2006.06.029
  16. Y. Wang, D.C. Alsmeyer, R.L. McCreery, Chem. Mater. 2 (1990) 557. https://doi.org/10.1021/cm00011a018
  17. R. Baddour-Hadjean, J.P. Pereira-Ramos, Chem. Rev. 110 (2010) 1278. https://doi.org/10.1021/cr800344k
  18. A.C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095. https://doi.org/10.1103/PhysRevB.61.14095
  19. N.A. Kaskhedikar, J. Maier, Adv. Mater. 21 (2009) 2664. https://doi.org/10.1002/adma.200901079
  20. J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Science 270 (1995) 590. https://doi.org/10.1126/science.270.5236.590
  21. T. Zheng, W.R. McKinnon, J.R. Dahn, Electrochem. Soc. 143 (1996) 2137. https://doi.org/10.1149/1.1836972
  22. J. Park, Principles and Applications of Lithium Secondary Batteries, Wiley-VCH, Weinheim, 2012p. 102.
  23. M. Parka, X. Zhanga, M. Chunga, G.B. Lessa, A.M. Sastrya, J. Power Sources 195 (2010) 7904. https://doi.org/10.1016/j.jpowsour.2010.06.060
  24. M. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Nano Lett. 9 (2009) 3844. https://doi.org/10.1021/nl902058c
  25. Z. Favors, W. Wang, H.H. Bay, Z. Mutlu, K. Ahmed, C. Liu, M. Ozkan, C.S. Ozkan, Sci. Rep. 4 (2014) 5623.
  26. S. Lee, C.S. Yoon, K. Amine, Y. Sun, J. Power Sources 234 (2013) 201. https://doi.org/10.1016/j.jpowsour.2013.01.045
  27. Y. Lin, P.R. Abel, A. Heller, C.B. Mullins, J. Phys. Chem. Lett. 2 (2011) 2885. https://doi.org/10.1021/jz201363j
  28. J. Jeong, B.G. Choi, S.C. Lee, K.G. Lee, S. Chang, Y. Han, Y.B. Lee, H.U. Lee, S. Kwon, G. Lee, C. Lee, Y.S. Huh, Adv. Mater. 25 (2013) 6250. https://doi.org/10.1002/adma.201302710

Cited by

  1. 석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향 vol.28, pp.4, 2016, https://doi.org/10.14478/ace.2017.1035
  2. 고밀도 탄소블럭 제조를 위한 코크스와 바인더피치의 젖음성에 미치는 불소화의 영향 vol.29, pp.6, 2018, https://doi.org/10.14478/ace.2018.1080
  3. Improved understanding of the molecular structure of pyrolysis fuel oil: towards its utilization as a raw material for mesophase pitch synthesis vol.29, pp.3, 2016, https://doi.org/10.1007/s42823-019-00027-x