DOI QR코드

DOI QR Code

Preparation and electrochemical analysis of graphene nanosheets/nickel hydroxide composite electrodes containing carbon nanotubes

  • Kim, Jieun (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Kim, Yuna (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
  • Received : 2015.07.02
  • Accepted : 2016.01.27
  • Published : 2016.04.25

Abstract

A set of graphene nanosheets (GNS)/nickel hydroxide ($Ni(OH)_2$) composites were successfully synthesized by adding single-walled carbon nanotubes (SWCNT) to the composites with various weight contents. The mixed composites were prepared by ultrasonication and chemical precipitation. It is postulated that the SWCNT act as additives in the composites, preventing the aggregation of the graphene sheets. The structural characterization indicated that the $Ni(OH)_2$ nanoparticles were deposited on the surface of GNS, and the SWCNT were dispersed between or onto the graphene sheets. The electrochemical performance of the composites was investigated by changing the contents of the added SWCNT. The prepared $GNS/SWCNT/Ni(OH)_2$ composites exhibited the superior electrochemical performance, indicated by the large specific capacitance over $1000Fg^{-1}$ and excellent cycle performance over 2000 cycles. Among the prepared composites, the $GNS/Ni(OH)_2$ composite containing 20 wt.% SWCNT displayed the maximum specific capacitance with a value of $1149Fg^{-1}$ at a in 6 M KOH electrolyte. Moreover, 92% of the initial specific capacitance of the composite was maintained after 2000-cycle test. Based on these results, the composite is thought to be suitable candidate for supercapacitor electrode materials.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845. https://doi.org/10.1038/nmat2297
  2. J.R. Miller, P. Simon, Science 321 (2008) 651. https://doi.org/10.1126/science.1158736
  3. L.H. Bao, J.F. Zang, X.D. Li, Nano Lett. 11 (2011) 1215. https://doi.org/10.1021/nl104205s
  4. M.G. Kim, S. Kim, J. Ind. Eng. Chem. 20 (6) (2014) 4447. https://doi.org/10.1016/j.jiec.2014.02.015
  5. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41 (2012) 797. https://doi.org/10.1039/C1CS15060J
  6. M.S. Oh, S. Kim, Electrochim. Acta 78 (2012) 279. https://doi.org/10.1016/j.electacta.2012.05.109
  7. M.S. Oh, S.J. Park, Y. Jung, S. Kim, Synth. Met. 162 (7) (2012) 695. https://doi.org/10.1016/j.synthmet.2012.02.021
  8. T.N. Ramesh, R.S. Jayashree, P.V. Kamath, S. Rodrigues, A.K. Shukla, J. Power Sources 104 (2002) 295. https://doi.org/10.1016/S0378-7753(01)00919-3
  9. D.D. Zhao, W.J. Zhou, H.L. Li, Chem. Mater. 19 (2007) 3882. https://doi.org/10.1021/cm062720w
  10. H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Nano Res. 4 (2011) 729. https://doi.org/10.1007/s12274-011-0129-6
  11. S.M. Bak, K.H. Kim, C.W. Lee, K.B. Kim, J. Mater. Chem. 21 (2011) 1984. https://doi.org/10.1039/C0JM00922A
  12. H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132 (2010) 7472. https://doi.org/10.1021/ja102267j
  13. J.H. Zhong, A.L. Wang, G.R. Li, J.W. Wang, Y.N. Ou, Y.X. Tong, J. Mater. Chem. 22 (2012) 5656. https://doi.org/10.1039/c2jm15863a
  14. C.G. Liu, Y.S. Lee, Y.J. Kim, I.C. Song, J.H. Kim, Synth. Met. 159 (2009) 2009. https://doi.org/10.1016/j.synthmet.2009.07.010
  15. X. Jiang, Y. Ma, J. Li, W. Huang, J. Phys. Chem. 114 (2010) 22462.
  16. H.M. Jeong, J.W. Lee, W.H. Shin, Y.H. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano Lett. 11 (2011) 2472. https://doi.org/10.1021/nl2009058
  17. S. Park, R.S. Ruoff, Nat. Nanotechnol. 4 (2009) 217. https://doi.org/10.1038/nnano.2009.58
  18. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. 22 (2010) 3906. https://doi.org/10.1002/adma.201001068
  19. Y. Huang, J.J. Liang, Y.S. Chen, Small 8 (2012) 1805. https://doi.org/10.1002/smll.201102635
  20. J.Y. Park, S.J. Park, S. Kim, J. Electrochem. Soc. 161 (5) (2014) F641. https://doi.org/10.1149/2.043405jes
  21. J. Yan, W. Sun, T. Wei, Q. Zhang, Z. Fan, F. Wei, J. Mater. Chem. 22 (2012) 11494. https://doi.org/10.1039/c2jm30221g
  22. J. Yan, T. Wei, B. Shao, F.Q. Ma, Z.J. Fan, M.L. Zhang, C. Zhang, Y.C. Shang, W.Z. Qian, F. Wei, Carbon 48 (2010) 1731. https://doi.org/10.1016/j.carbon.2010.01.014
  23. J.E. Kim, S. Kim, Electrochim. Acta 119 (2014) 11. https://doi.org/10.1016/j.electacta.2013.11.187
  24. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Phys. Chem. Chem. Phys. 13 (2011) 17615. https://doi.org/10.1039/c1cp21910c
  25. Y. Wu, T. Zhang, F. Zhang, Y. Wang, Y. Ma, Y. Huang, Y. Liu, Y. Chen, Nano Energy 1 (2012) 820. https://doi.org/10.1016/j.nanoen.2012.07.001
  26. J.R. Choi, Y.S. Lee, S.J. Park, J. Ind. Eng. Chem. 20 (5) (2014) 3421. https://doi.org/10.1016/j.jiec.2013.12.029
  27. Y.J. Yim, S.J. Park, J. Ind. Eng. Chem. 21 (1) (2015) 155. https://doi.org/10.1016/j.jiec.2014.04.001
  28. P.M. Ajayan, O.Z. Zhou, Appl. Phys. 80 (2001) 391.
  29. W.H. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017
  30. Y. Liang, D. Wu, X. Feng, K. Mullen, Adv. Mater. 21 (2009) 1679. https://doi.org/10.1002/adma.200803160
  31. C.Z. Yuan, B. Gao, X.G. Zhang, J. Power Sources 173 (2007) 606. https://doi.org/10.1016/j.jpowsour.2007.04.034
  32. J.W. Lee, T. Ann, D. Soundararajan, J.M. Ko, J.D. Kim, Chem. Commun. 47 (2011) 6305. https://doi.org/10.1039/c1cc11566a
  33. B.J. Li, H.Q. Cao, J. Shao, H. Zheng, Y.X. Lu, J.F. Yin, M.Z. Qu, Chem. Commun. 47 (2011) 3159. https://doi.org/10.1039/c0cc04507a
  34. X. Chen, X. Chen, F. Zhang, Z. Yang, S. Huang, J. Power Sources 243 (2013) 555. https://doi.org/10.1016/j.jpowsour.2013.04.076
  35. S.K. Park, Y. Shao, H. Wan, P.C. Rieke, V.V. Viswanathan, S.A. Towne, J. Liu, Y. Wang, Electrochem. Commun. 13 (2011) 258. https://doi.org/10.1016/j.elecom.2010.12.028
  36. T. Battumur, S.B. Ambade, R.B. Ambade, P. Pokharel, D.S. Lee, S. Han, W. Lee, S. Lee, Curr. Appl. Phys. 13 (2013) 196. https://doi.org/10.1016/j.cap.2012.07.009
  37. F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy, Chem. Mater. 23 (2011) 4810. https://doi.org/10.1021/cm2021214
  38. F. Zeng, Y. Kuang, N. Zhang, Z. Huang, Y. Pan, Z. Hou, H. Zhou, C. Yan, O.G. Schmidt, J. Power Sources 247 (2014) 396. https://doi.org/10.1016/j.jpowsour.2013.08.122
  39. Y. Kim, S. Kim, Electrochim. Acta 163 (2015) 252. https://doi.org/10.1016/j.electacta.2015.02.103
  40. J.E. Kim, S. Kim, Appl. Surf. Sci. 295 (2014) 31. https://doi.org/10.1016/j.apsusc.2013.12.156

Cited by

  1. Facile synthesis of high-performance Ni(OH)2/expanded graphite electrodes for asymmetric supercapacitors vol.28, pp.23, 2017, https://doi.org/10.1007/s10854-017-7745-1
  2. Transition-metal-based layered double hydroxides tailored for energy conversion and storage vol.6, pp.1, 2016, https://doi.org/10.1039/c7ta09370e
  3. Effect of Thermal Treatment Temperature on Electrochemical Behaviors of Ni/trimesic Acid-based Metal Organic Frameworks Electrodes for Supercapacitors vol.30, pp.1, 2016, https://doi.org/10.14478/ace.2018.1090
  4. Effect of Thermal Treatment Temperature on Electrochemical Behaviors of Ni/trimesic Acid-based Metal Organic Frameworks Electrodes for Supercapacitors vol.30, pp.1, 2016, https://doi.org/10.14478/ace.2018.1090
  5. Preparation and Electrochemical Behaviors of Petal-like Nickel Cobaltite/Reduced Graphene Oxide Composites for Supercapacitor Electrodes vol.30, pp.3, 2016, https://doi.org/10.14478/ace.2019.1020
  6. Microwave-assisted one-pot synthesis of iron(II, III) oxide/reduced graphene oxide for an application of supercapacitor electrode vol.29, pp.4, 2019, https://doi.org/10.1007/s42823-019-00045-9