DOI QR코드

DOI QR Code

Prediction of the Band Structures of Bi2Te3-related Binary and Sb/Se-doped Ternary Thermoelectric Materials

  • Ryu, Byungki (Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI)) ;
  • Kim, Bong-Seo (Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI)) ;
  • Lee, Ji Eun (Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI)) ;
  • Joo, Sung-Jae (Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI)) ;
  • Min, Bok-Ki (Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI)) ;
  • Lee, HeeWoong (Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI)) ;
  • Park, Sudong (Thermoelectric Conversion Research Center, Korea Electrotechnology Research Institute (KERI)) ;
  • Oh, Min-Wook (Department of Advanced Materials Engineering, Hanbat National University)
  • Received : 2015.01.30
  • Accepted : 2015.06.16
  • Published : 2016.01.15

Abstract

Density functional calculations are performed to study the band structures of $Bi_2Te_3$-related binary ($Bi_2Te_3$, $Sb_2Te_3$, $Bi_2Se_3$, and $Sb_2Se_3$) and Sb/Se-doped ternary compounds [$(Bi_{1-x}Sb_x)_2Te_3$ and $Bi_2(Te_{1-y}Se_y)_3$]. The band gap was found to be increased by Sb doping and to be monotonically increased by Se doping. In ternary compounds, the change in the conduction band structure is more significant as compared to the change in the valence band structure. The band degeneracy of the valence band maximum is maintained at 6 in binaries and ternaries. However, when going from $Bi_2Te_3$ to $Sb_2Te_3\;(Bi_2Se_3)$, the degeneracy of the conduction band minimum is reduced from 6 to 2(1). Based on the results for the band structures, we suggest suitable stoichiometries of ternary compounds for high thermoelectric performance.

Keywords

Acknowledgement

Grant : Development of design tools of thermoelectric and energy materials, Development of Bi-Te based Thermoelectric Energy Conversion Materials by Controlling Multi-level Nanostructure in Pilot Scale

Supported by : Korea Electrotechnology Research Institute (KERI), Korea Evaluation Institute of Industrial Technology (KEIT)

References

  1. H. J. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, Heidelberg, 2010).
  2. D. M. Rowe, Thermoelectrics Handbook (CRC Press, Boca Raton, 2006).
  3. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993). https://doi.org/10.1103/PhysRevB.47.12727
  4. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial and P. Gogna, Adv. Mater. 19, 1043 (2007). https://doi.org/10.1002/adma.200600527
  5. J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri and A. C. Gossard, Phys. Rev. B 74, 205335 (2006). https://doi.org/10.1103/PhysRevB.74.205335
  6. S. V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008). https://doi.org/10.1103/PhysRevB.77.214304
  7. G. D. Mahan and J. O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996). https://doi.org/10.1073/pnas.93.15.7436
  8. J. P. Heremans, V. Jovovic, E. S. Toberer, E. A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science 321, 554 (2008). https://doi.org/10.1126/science.1159725
  9. G. J. Snyder and E. S. Toberer, Nature Mater. 7, 105 (2008). https://doi.org/10.1038/nmat2090
  10. T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding and J. O. Sofo, Phys. Rev. B 68, 125210 (2003). https://doi.org/10.1103/PhysRevB.68.125210
  11. M.W. Oh, D. M. Wee, S. D. Park, B. S. Kim and H. W. Lee, Phys. Rev. B 77, 165119 (2008). https://doi.org/10.1103/PhysRevB.77.165119
  12. S. Feng, S. Li, X. Li and H. Fu, Comp. Mater. Sci. 95, 563 (2014). https://doi.org/10.1016/j.commatsci.2014.08.028
  13. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen and G. J. Snyder, Nature (London) 473, 66 (2011). https://doi.org/10.1038/nature09996
  14. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang and C. Uher, Phys. Rev. Lett. 108, 166601 (2012). https://doi.org/10.1103/PhysRevLett.108.166601
  15. J.-H. Lee, J. Wu and J. C. Grossman, Phys. Rev. Lett. 104, 016602 (2010). https://doi.org/10.1103/PhysRevLett.104.016602
  16. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and G. Kanatzidis, Nature (London) 508, 373 (2014). https://doi.org/10.1038/nature13184
  17. D. T. Morelli, V. Jovovic and J. P. Heremans, Phys. Rev. Lett. 101, 035901 (2008). https://doi.org/10.1103/PhysRevLett.101.035901
  18. B. Abeles, Phys. Rev. 131, 1906 (1963). https://doi.org/10.1103/PhysRev.131.1906
  19. M. C. Steele and F. D. Rosi, J. Appl. Phys. 29, 1517 (1958). https://doi.org/10.1063/1.1722984
  20. J. Garg, N. Bonini, B. Kozinsky and N. Marzari, Phys. Rev. Lett. 106, 045901 (2011). https://doi.org/10.1103/PhysRevLett.106.045901
  21. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis, Science 303, 818 (2004). https://doi.org/10.1126/science.1092963
  22. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006). https://doi.org/10.1103/PhysRevLett.96.045901
  23. B. Poudel et al., Science 320, 634 (2008). https://doi.org/10.1126/science.1156446
  24. K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, Nature (London) 489, 414 (2012). https://doi.org/10.1038/nature11439
  25. R. J. Korkosz et al., J.Am.Chem. Soc. 136, 3225 (2014). https://doi.org/10.1021/ja4121583
  26. H. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 10949 (2014). https://doi.org/10.1073/pnas.1403601111
  27. J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim and G. Kotliar, Nature (London) 459, 965 (2009). https://doi.org/10.1038/nature08088
  28. S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Ketterson and J. R. Meyer, Appl. Phys. Lett. 75, 1401 (1999). https://doi.org/10.1063/1.124707
  29. D. West, Y. Y. Sun, H. Wang, J. Bang and S. B. Zhang, Phys. Rev. B 86, 121201(R) (2012). https://doi.org/10.1103/PhysRevB.86.121201
  30. J. H. Son, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min, M. H. Kim and H. W. Lee, J. Alloys Comp. 566, 168 (2013). https://doi.org/10.1016/j.jallcom.2013.03.062
  31. M.W. Oh, J. H. Son, B. S. Kim, S. D. Park, B. K. Min and H. W. Lee, J. Appl. Phys. 115, 133706 (2014). https://doi.org/10.1063/1.4870818
  32. G.-E. Lee, I.-H. Kim, S.-M. Choi, Y. S. Lim, W.-S. Seo, J.-S. Park and S.-H. Yang, J. Korean Phys. Soc. 65, 2066 (2014). https://doi.org/10.3938/jkps.65.2066
  33. G.-E. Lee, I.-H. Kim, S.-M. Choi, Y. S. Lim, W.-S. Seo, J.-S. Park and S.-H. Yang, J. Korean Phys. Soc. 65, 1908 (2014). https://doi.org/10.3938/jkps.65.1908
  34. P. Larson, S. D. Mahanti, M. G. Kanatzidis, Phys. Rev. B 61, 8162 (2000). https://doi.org/10.1103/PhysRevB.61.8162
  35. S. J. Youn and A. J. Freeman, Phys. Rev. B 63, 085112 (2001). https://doi.org/10.1103/PhysRevB.63.085112
  36. M. Kim, A. J. Freeman, C. B. Geller, Phys. Rev. B 72, 035205 (2005). https://doi.org/10.1103/PhysRevB.72.035205
  37. S. Lee and P. von Allmen, Appl. Phys. Lett. 88, 022107 (2006). https://doi.org/10.1063/1.2162863
  38. P. Larson, Phys. Rev. B 74, 205113 (2006). https://doi.org/10.1103/PhysRevB.74.205113
  39. G. Wang and T. Cagin, Phys. Rev. B 76, 075201 (2007). https://doi.org/10.1103/PhysRevB.76.075201
  40. E. Kioupakis, M. L. Tiago and S. G. Louie, Phys. Rev. B 82, 245203 (2010). https://doi.org/10.1103/PhysRevB.82.245203
  41. B. Y. Yavorsky, N. F. Hinsche, I. Mertig and P. Zahn, Phys. Rev. B 84, 165208 (2011). https://doi.org/10.1103/PhysRevB.84.165208
  42. N. F. Hinsche, B. Y. Yavorsky, I. Mertig and P. Zahn, Phys. Rev. B 84, 165214 (2011). https://doi.org/10.1103/PhysRevB.84.165214
  43. D. Parker and D. J. Singh, Phys. Rev. X 1, 021005 (2011).
  44. O. V. Yazyev, E. Kioupakis, J. E. Moore and S. G. Louie, Phys. Rev. B 85, 161101(R) (2012). https://doi.org/10.1103/PhysRevB.85.161101
  45. X. Luo, M. B. Sullivan and S. Y. Quek, Phys. Rev. B 86, 184111 (2012). https://doi.org/10.1103/PhysRevB.86.184111
  46. I. A. Nechaev and E. V. Chulkov, Phys. Rev. B 88, 165135 (2013). https://doi.org/10.1103/PhysRevB.88.165135
  47. H. Y. Lv, H. J. Liu, L. Pan, Y. W. Wen, X. J. Tan, J. Shi and X. F. Tang, Appl. Phys. Lett. 96, 142101 (2010). https://doi.org/10.1063/1.3372636
  48. M. S. Park, J.-W. Song, J. E. Medvedeva, M. Kim, I. G. Kim and A. J. Freeman, Phys. Rev. B 81, 155211 (2010). https://doi.org/10.1103/PhysRevB.81.155211
  49. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  50. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  51. L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877 (2000). https://doi.org/10.1103/PhysRevB.61.7877
  52. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  53. P. E. Blochl, Phys. Rev. B 50, 1793 (1994).
  54. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  55. G. Kresse and J. Joubert, Phys. Rev. 59, 1758 (1999).
  56. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  57. R. Sehr and L. R. Testardi, J. Phys. Chem. Sol. 23, 1219 (1962). https://doi.org/10.1016/0022-3697(62)90169-5
  58. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang and S.-C. Zhang, Nature Phys. 5, 438 (2009). https://doi.org/10.1038/nphys1270

Cited by

  1. Hybrid-density functional theory study on the band structures of tetradymite-Bi2Te3, Sb2Te3, Bi2Se3, and Sb2Se3 thermoelectric materials vol.69, pp.11, 2016, https://doi.org/10.3938/jkps.69.1683
  2. Influence of Doping and Nanostructuration on n-Type Bi 2 (Te 0.8 Se 0.2 ) 3 Alloys Synthesized by Arc Melting vol.12, pp.1, 2017, https://doi.org/10.1186/s11671-016-1823-9
  3. Thermoelectric and transport properties of N-type Bi2−x Sb x Te3−y Se y solid solutions vol.70, pp.5, 2016, https://doi.org/10.3938/jkps.70.505
  4. Effects of an in vacancy on local distortion of fast phase transition in Bi-doped In3SbTe2 vol.71, pp.12, 2017, https://doi.org/10.3938/jkps.71.946
  5. Strain effects in topological insulators: Topological order and the emergence of switchable topological interface states in Sb2Te3/Bi2Te3 heterojunctions vol.95, pp.20, 2016, https://doi.org/10.1103/physrevb.95.205422
  6. Work function of bismuth telluride: First-principles approach vol.72, pp.1, 2018, https://doi.org/10.3938/jkps.72.122
  7. Enhancing Thermoelectric Performances of Bismuth Antimony Telluride via Synergistic Combination of Multiscale Structuring and Band Alignment by FeTe2 Incorporation vol.10, pp.4, 2016, https://doi.org/10.1021/acsami.7b18451
  8. Charge Transport and Thermoelectric Properties of N-type Bi2-xSbxTe3-ySey:Im Prepared by Encapsulated Melting and Hot Pressing vol.56, pp.7, 2016, https://doi.org/10.3365/kjmm.2018.56.7.544
  9. First-principles study of the thermoelectric properties of quaternary tetradymite BiSbSeTe2 vol.51, pp.31, 2016, https://doi.org/10.1088/1361-6463/aace7b
  10. Bi2Te3 single crystals with high room-temperature thermoelectric performance enhanced by manipulating point defects based on first-principles calculation vol.9, pp.25, 2019, https://doi.org/10.1039/c9ra01738k
  11. Effect of Photon Treatment on Structure and Substructure of Bi2Te3 -xSex Thermoelectric Material vol.11, pp.2, 2016, https://doi.org/10.1134/s2075113320020069
  12. Superlinear Photogalvanic Effects in ( $ \mathrm{Bi}_{0.3}\mathrm{Sb}_{0.7})_{2}$ ( $ \mathrm{Te}_{0.1}\mathrm{Se}_{0.9})_{3}$ : Probing Three-Dimensional Topological Insulator Surface States at R vol.16, pp.6, 2021, https://doi.org/10.1103/physrevapplied.16.064030
  13. Effect of microstructure on thermoelectric conversion efficiency in metastable δ-phase AgSbTe2 vol.222, pp.None, 2016, https://doi.org/10.1016/j.actamat.2021.117443