DOI QR코드

DOI QR Code

A comparative electrical transport study on Cu/n-type InP Schottky diode measured at 300 and 100 K

  • Kim, Hogyoung (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech)) ;
  • Jung, Chan Yeong (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech)) ;
  • Kim, Se Hyun (Department of Visual Optics, Seoul National University of Science and Technology (Seoultech)) ;
  • Cho, Yunae (Department of Physics, Ewha Womans University) ;
  • Kim, Dong-Wook (Department of Physics, Ewha Womans University)
  • Received : 2015.07.23
  • Accepted : 2015.10.13
  • Published : 2016.01.31

Abstract

Two oxygen plasma treated InP samples with different plasma powers of 100 and 250 W were prepared and a comparative study on the electrical properties of Cu/n-type InP Schottky diode measured at 300 and 100 K was performed to investigate the current transport mechanism in detail. The forward and reverse bias currentevoltage (I-V) characteristics were analyzed with considering various transport models. The fitting to the forward bias I-V characteristics revealed that relatively high ideality factor at 300 K for untreated sample were related with the generation-recombination (GR) current and the large $E_{00}$ value at 100 K for 100 W plasma treated sample were associated with more significant tunneling effect. The analyses on the reverse bias current characteristics showed the suitable current transport model has changed from thermionic emission (TE) to TE combined with barrier lowering for both untreated and 250 W treated samples and from TE + BL to thermionic field emission for 100 W treated sample with increasing temperature from 100 to 300 K.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. P. Cova, A. Sing, A. Medina, R. Masut, Solid State Electron. 42 (1998) 477. https://doi.org/10.1016/S0038-1101(97)00250-5
  2. A. Sing, K. Reinhardt, W. Anderson, J. Appl. Phys. 68 (1990) 3475. https://doi.org/10.1063/1.346358
  3. T. Sugino, H. Ito, J. Shirafuji, Electron. Lett. 26 (1990) 1750. https://doi.org/10.1049/el:19901124
  4. H. Hasegawa, Solid State Electron. 41 (1997) 1441. https://doi.org/10.1016/S0038-1101(97)00087-7
  5. J. Wager, C. Wilmsen, J. Appl. Phys. 51 (1980) 812. https://doi.org/10.1063/1.327302
  6. A. Astito, A. Foucaran, G. Bastide, M. Rouzeyre, J. Appl. Phys. 70 (1991) 2584. https://doi.org/10.1063/1.349366
  7. A. Ahaitouf, E. Losson, A. Bath, Solid State Electron. 44 (2000) 515. https://doi.org/10.1016/S0038-1101(99)00269-5
  8. O. Gullu, S. Aydogan, A. Turut, Thin Solid Films 520 (2012) 1944. https://doi.org/10.1016/j.tsf.2011.09.043
  9. V. Reddy, Thin Solid Films 556 (2014) 300. https://doi.org/10.1016/j.tsf.2014.01.036
  10. M. Soylu, B. Abay, Y. Onganer, J. Phys. Chem. Solids 71 (2010) 1398. https://doi.org/10.1016/j.jpcs.2010.07.003
  11. A. Umapathi, V. Reddy, Microelectron. Eng. 114 (2014) 31. https://doi.org/10.1016/j.mee.2013.09.006
  12. P. Hanselaer, W. Laflere, R. Van Meirhaeghe, F. Cardon, Appl. Phys. A 39 (1986) 129. https://doi.org/10.1007/BF00616830
  13. H. Yamagishi, Jpn. J. Appl. Phys. 25 (1986) 1691. https://doi.org/10.1143/JJAP.25.1691
  14. K. Suzue, S. Mohammad, Z. Fan, W. Kim, O. Aktas, A. Botchkarev, H. Morkoc, J. Appl. Phys. 80 (1996) 4467. https://doi.org/10.1063/1.363408
  15. S. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
  16. R. Schmitsdorf, T. Kampen, W. Monch, J. Vac. Sci. Technol. B 15 (1997) 1221. https://doi.org/10.1116/1.589442
  17. R. Tung, Phys. Rev. B 45 (1992) 13509. https://doi.org/10.1103/PhysRevB.45.13509
  18. W. Monch, J. Vac. Sci. Technol. B 17 (1999) 1867. https://doi.org/10.1116/1.590839
  19. K. Maeda, H. Ikoma, T. Ischida, Appl. Phys. Lett. 62 (1993) 2560. https://doi.org/10.1063/1.109296
  20. A. Ahaitouf, A. Bath, E. Losson, E. Abarkan, Mater. Sci. Eng. B 52 (1998) 208. https://doi.org/10.1016/S0921-5107(98)00107-X
  21. F. Padovani, R. Stratton, Solid State Electron. 9 (1966) 695. https://doi.org/10.1016/0038-1101(66)90097-9
  22. D. Yan, J. Jiao, J. Ren, G. Yang, X. Gu, J. Appl. Phys. 114 (2013) 144511. https://doi.org/10.1063/1.4824296
  23. D. Donoval, M. Barus, M. Zdimal, Solid State Electron. 34 (1991) 1365. https://doi.org/10.1016/0038-1101(91)90031-S
  24. I. Hussain, M. Soomro, N. Bano, O. Nur, M. Willander, J. Appl. Phys. 112 (2012) 064506. https://doi.org/10.1063/1.4752402
  25. A. Yu, Solid State Electron. 13 (1970) 239. https://doi.org/10.1016/0038-1101(70)90056-0
  26. K. Choi, C. Lee, J. Korean Phys. Soc. 42 (2003) S702.
  27. C. Jung, S. Kim, H. Kim, J. Korean Phys. Soc. 66 (2015) 1285. https://doi.org/10.3938/jkps.66.1285
  28. K. Cinar, N. Yildirim, C. Coskun, A. Turut, J. Appl. Phys. 106 (2009) 073717. https://doi.org/10.1063/1.3236647

Cited by

  1. Contact Area-Dependent Electron Transport in Au/n-type Ge Schottky Junction vol.26, pp.8, 2016, https://doi.org/10.3740/mrsk.2016.26.8.412
  2. Influence of Al2O3barrier on the interfacial electronic structure of Au/Ti/n-GaAs structures vol.38, pp.5, 2016, https://doi.org/10.1088/1674-4926/38/5/054003