DOI QR코드

DOI QR Code

Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds

  • Trinh, Quang Hung (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • Received : 2015.11.24
  • Accepted : 2015.12.30
  • Published : 2016.03.01

Abstract

Nonthermal plasma (NTP) coupled with catalysis is a promising technique for the abatement of dilute volatile organic compounds (VOCs), because it is operable under mild reaction conditions, i.e., low temperature and atmospheric pressure. This review addresses the mechanistic aspects of catalyst activation by NTP, such as the generation and fixation of reactive species, facilitation of redox cycles, photocatalysis, and local heating, to clarify the combined effects of plasma and catalysis. The plasma-catalytic removal of VOCs preferentially requires the catalyst to have a large specific surface area, high surface oxygen storage capacity, and to be highly reducible. The energy consumption and deactivation of catalysts are considered by comparing continuous and cyclic operations in terms of specific input energy, VOC removal and energy efficiencies, and byproduct formation. Based on the information in the literature, a plasma-catalytic system operating in cyclic adsorption-oxidation mode is recommended for the treatment of air contaminated by dilute VOCs. Finally, the effects of NTP on the regeneration of deactivated catalysts are also discussed.

Keywords

Acknowledgement

Supported by : National Research Foundation

References

  1. S. Azalim, M. Franco, R. Brahmi, J. M. Giraudon and J. F. Lamonier, J. Hazard. Mater., 188(1-3), 422 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.135
  2. V. Nehra, A. Kumar and H. Dwivedi, Int. J. Eng., 2(1), 53 (2008).
  3. T. Kuwahara, M. Okubo, T. Kuroki, H. Kametaka and T. Yamamoto, Sensors, 11(6), 5529 (2011). https://doi.org/10.3390/s110605529
  4. K. G. Kostov, R.Y. Honda, L. M. S. Alves and M. E. Kayama, Braz. J. Phys., 39(2), 322 (2009). https://doi.org/10.1590/S0103-97332009000300015
  5. U. Kogelschatz, Plasma Chem. Plasma Process., 23(1), 1 (2003). https://doi.org/10.1023/A:1022470901385
  6. M. Chen, K. Takashima and A. Mizuno, Int. J. Plasma Environ. Sci. Technol., 7(1), 89 (2013).
  7. Z. Abd Allah, J. C. Whitehead and P. Martin, Environ. Sci. Technol., 48(1), 558 (2014). https://doi.org/10.1021/es402953z
  8. C. Ayrault, J. Barrault, N. Blin-Simiand, F. Jorand, S. Pasquiers, A. Rousseau and J. M. Tatibouet, Catal. Today, 89(1-2), 75 (2004). https://doi.org/10.1016/j.cattod.2003.11.042
  9. W. S. Kang, D.H. Lee, J.O. Lee, M. Hur and Y. H. Song, Environ. Sci. Technol., 47(19), 11358 (2013). https://doi.org/10.1021/es402477a
  10. W. Liu, W.P. Addiego, C.M. Sorensen and T. Boger, Ind. Eng. Chem. Res., 41(13), 3131 (2002). https://doi.org/10.1021/ie010730v
  11. I. Biganzoli, R. Barni, A. Gurioli, R. Pertile and C. Riccardi, J. Phys.: Conf. Ser., 550, 012039 (2014). https://doi.org/10.1088/1742-6596/550/1/012039
  12. L. Sivachandiran, J. Karuppiah and C. Subrahmanyam, Int. J. Chem. React. Eng., 10(1), 1542 (2012).
  13. T.C. Manley, J. Electrochem. Soc., 84(1), 83 (1943). https://doi.org/10.1149/1.3071556
  14. A. Eid, K. Takashima and A. Mizuno, IEEE Trans. Ind. Appl., 50(6), 4221 (2014). https://doi.org/10.1109/TIA.2014.2315496
  15. V. I. Parvulescu, M. Magureanu and P. Lukes, Plasma chemistry and catalysis in gases and liquids, Wiley-VCH, Weinheim (2012).
  16. H.H. Kim, Plasma Proc. Polym., 1(2), 91 (2004). https://doi.org/10.1002/ppap.200400028
  17. S. Gourrier and M. Bacal, Plasma Chem. Plasma Process., 1(3), 217 (1981). https://doi.org/10.1007/BF00568831
  18. O. Guaitella, F. Thevenet, E. Puzenat, C. Guillard and A. Rousseau, Appl. Catal., B, 80(3-4), 296 (2008). https://doi.org/10.1016/j.apcatb.2007.11.032
  19. K.V. Kozlov, H. E. Wagner, R. Brandenburg and P. Michel, J. Phys. D: Appl. Phys., 34(21), 3164 (2001). https://doi.org/10.1088/0022-3727/34/21/309
  20. O. Guaitella, C. Lazzaroni, D. Marinov and A. Rousseau, Appl. Phys. Lett., 97, 011502 (2010). https://doi.org/10.1063/1.3462295
  21. O. Guaitella, M. Hubner, S. Welzel, D. Marinov, J. Ropcke and A. Rousseau, Plasma Sources Sci. Technol., 19(4), 045026 (2010). https://doi.org/10.1088/0963-0252/19/4/045026
  22. H. H. Kim, A. Ogata, M. Schiorlin, E. Marotta and C. Paradisi, Catal. Lett., 141 (2), 277 (2011). https://doi.org/10.1007/s10562-010-0491-0
  23. Y. Guo, X. Liao, J. He, W. Ou and D. Ye, Catal. Today, 153(3-4), 176 (2010). https://doi.org/10.1016/j.cattod.2010.03.024
  24. L. Sivachandiran, F. Thevenet, P. Gravejat and A. Rousseau, Chem. Eng. J., 214, 17 (2013). https://doi.org/10.1016/j.cej.2012.10.022
  25. X. Zhu, X. Gao, C. Zheng, Z. Wang, M. Ni and X. Tu, RSC Adv., 4, 37796 (2014). https://doi.org/10.1039/C4RA05985A
  26. J. Chen, Z. Xie, J. Tang, J. Zhou, X. Lu and H. Zhao, Chem. Eng. J., 284, 166 (2016). https://doi.org/10.1016/j.cej.2015.09.006
  27. Y. Guo, X. Liao and D. Ye, J. Environ. Sci., 20(12), 1429 (2008). https://doi.org/10.1016/S1001-0742(08)62544-9
  28. M. S. Gandhi, A. Ananth, Y. S. Mok, J. I. Song and K. H. Park, Res. Chem. Intermed., 40(4), 1483 (2014). https://doi.org/10.1007/s11164-013-1053-z
  29. C. Zheng, X. Zhu, X. Gao, L. Liu, Q. Chang, Z. Luo and K. Cen, J. Ind. Eng. Chem., 20(5), 2761 (2014). https://doi.org/10.1016/j.jiec.2013.11.004
  30. X. Zhu, X. Gao, R. Qin, Y. Zeng, R. Qu, C. Zheng and X. Tu, Appl. Catal., B, 170-171, 293 (2015). https://doi.org/10.1016/j.apcatb.2015.01.032
  31. H. H. Kim, A. Ogata and S. Futamura, J. Phys. D: Appl. Phys., 38(8), 1292 (2005). https://doi.org/10.1088/0022-3727/38/8/029
  32. J. Jarrige and P. Vervisch, Appl. Catal., B, 90(1-2), 74 (2009). https://doi.org/10.1016/j.apcatb.2009.02.015
  33. T. Zhu, Y.D. Wan, J. Li, X.W. He, D.Y. Xu, X.Q. Shu, W. J. Liang and Y.Q. Jin, Int. J. Environ. Sci. Technol., 8(3), 621 (2011). https://doi.org/10.1007/BF03326247
  34. A.M. Harling, D. J. Glover, J. C. Whitehead and K. Zhang, Appl. Catal., B, 90(1-2), 157 (2009). https://doi.org/10.1016/j.apcatb.2009.03.005
  35. X. Tang, F. Feng, L. Ye, X. Zhang, Y. Huang, Z. Liu and K. Yan, Catal. Today, 211, 39 (2013). https://doi.org/10.1016/j.cattod.2013.04.026
  36. W. Li and S.T. Oyama, J. Am. Chem. Soc., 120(35), 9047 (1998). https://doi.org/10.1021/ja9814422
  37. M.T.N. Dinh, J. M. Giraudon, J. F. Lamonier, A. Vandenbroucke, N.D. Geyter, C. Leys and R. Morent, Appl. Catal., B, 147, 904 (2014). https://doi.org/10.1016/j.apcatb.2013.07.008
  38. M.T.N. Dinh, J. M. Giraudon, A. M. Vandenbroucke, R. Morent, N.D. Geyter and J. F. Lamonier, Appl. Catal., B, 172-173, 65 (2015). https://doi.org/10.1016/j.apcatb.2015.02.013
  39. Y. Li, Z. Fan, J. Shi, Z. Liu and W. Shangguan, Chem. Eng. J., 241, 251 (2014). https://doi.org/10.1016/j.cej.2013.12.036
  40. A.M. Vandenbroucke, M. Mora, C. J. Sanchidrian, F. J.R. Salguero, N.D. Geyter, C. Leys and R. Morent, Appl. Catal., B, 156-157, 94 (2014). https://doi.org/10.1016/j.apcatb.2014.03.007
  41. S. Delagrange, L. Pinard and J.M. Tatibouet, Appl. Catal., B, 68(3-4), 92 (2006). https://doi.org/10.1016/j.apcatb.2006.07.002
  42. Y. Li, Z. Fan, J. Shi, Z. Liu, J. Zhou and W. Shangguan, Catal. Today, 256, 178 (2015). https://doi.org/10.1016/j.cattod.2015.02.003
  43. A.M. Vandenbroucke, M.T.N. Dinh, N. Nuns, J.M. Giraudon, N.D. Geyter, C. Leys and R. Morent, Chem. Eng. J., 283, 668 (2016). https://doi.org/10.1016/j.cej.2015.07.089
  44. A. Ogata, K. Saito, H. H. Kim, M. Sugasawa, H. Aritani and H. Einaga, Plasma Chem. Plasma Process., 30(1), 33 (2010). https://doi.org/10.1007/s11090-009-9206-y
  45. Q.H. Trinh and Y.S. Mok, Catalysts, 5(2), 800 (2015). https://doi.org/10.3390/catal5020800
  46. J.O. Jo, S.B. Lee, D.L. Jang and Y. S. Mok, IEEE Trans. Plasma Sci., 41(10), 3021 (2013). https://doi.org/10.1109/TPS.2013.2279551
  47. X. Zhu, X. Gao, X. Yu, C. Zheng and X. Tu, Catal. Today, 256, 108 (2015). https://doi.org/10.1016/j.cattod.2015.01.028
  48. H.Q. Trinh and Y.S. Mok, Chem. Eng. J., 251, 199 (2014). https://doi.org/10.1016/j.cej.2014.04.071
  49. R. Huang, M. Lu, P. Wang, Y. Chen, J. Wu, M. Fu, L. Chen and D. Ye, RSC Adv., 5, 72113 (2015). https://doi.org/10.1039/C5RA13604K
  50. S. Yamamoto, S. Yao, S. Kodama, C. Mine and Y. Fujioka, Open Catal. J., 1(1), 11 (2008). https://doi.org/10.2174/1876214X00801010011
  51. J.O. Jo, S.B. Lee, D.L. Jang, J. Park and Y.S. Mok, Clean Technol., 20(4), 375 (2014). https://doi.org/10.7464/ksct.2014.20.4.375
  52. Y. Guo, X. Liao, M. Fu, H. Huang and D. Ye, J. Environ. Sci., 28, 187 (2015). https://doi.org/10.1016/j.jes.2014.06.048
  53. H.X. Ding, A. M. Zhu, F. G. Lu, Y. Xu, J. Zhang and X. F. Yang, J. Phys. D: Appl. Phys., 39(16), 3603 (2006). https://doi.org/10.1088/0022-3727/39/16/012
  54. S. Futamura, A. Zhang, H. Einaga and H. Kabashima, Catal. Today, 72(3-4), 259 (2002). https://doi.org/10.1016/S0920-5861(01)00503-X
  55. M. Lu, R. Huang, J. Wu, M. Fu, L. Chen and D. Ye, Catal. Today, 242, 274 (2015). https://doi.org/10.1016/j.cattod.2014.07.026
  56. A. Ogata, H. H. Kim, S. M. Oh and S. Futamura, Thin Solid Films, 506-507, 373 (2006). https://doi.org/10.1016/j.tsf.2005.08.098
  57. S. Chavadej, K. Saktrakool, P. Rangsunvigit, L. L. Lobban and T. Sreethawong, Chem. Eng. J., 132(1-3), 345 (2007). https://doi.org/10.1016/j.cej.2007.01.030
  58. T. Sano, N. Negishi, E. Sakai and S. Matsuzawa, J. Mol. Catal. A: Chem., 245(1-2), 235 (2006). https://doi.org/10.1016/j.molcata.2005.10.002
  59. K. Hashimoto, H. Irie and A. Fujishima, Jpn. J. Appl. Phys., 44(12), 8269 (2005). https://doi.org/10.1143/JJAP.44.8269
  60. S. Pekarek, J. Mikes and J. Krysa, Appl. Catal., A, 502, 122 (2015). https://doi.org/10.1016/j.apcata.2015.06.003
  61. M. S. Gandhi and Y.S. Mok, Chemosphere, 117, 440 (2014). https://doi.org/10.1016/j.chemosphere.2014.08.026
  62. K. Saulich and S. Muller, J. Phys. D: Appl. Phys., 46(4), 045201 (2013). https://doi.org/10.1088/0022-3727/46/4/045201
  63. T. Kuroki, T. Fujioka, R. Kawabata, M. Okubo and T. Yamamoto, IEEE Trans. Ind. Appl., 45(1), 10 (2009). https://doi.org/10.1109/TIA.2008.2009476
  64. A. Rousseau, A. Dantier, L. Gatilova, Y. Ionikh, J. Ropcke and Y.A. Tolmachev, Plasma Sources Sci. Technol., 14(1), 70 (2005). https://doi.org/10.1088/0963-0252/14/1/009
  65. H. H. Kim, A. Ogata and S. Futamura, IEEE Trans. Plasma Sci., 34(3), 984 (2006). https://doi.org/10.1109/TPS.2006.875728
  66. H. H. Kim, A. Ogata and S. Futamura, Int. J. Plasma Environ. Sci. Technol., 1(1), 46 (2007).
  67. X. Fan, T. Zhu, Y. Sun and X. Yan, J. Hazard. Mater., 196, 380 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.044
  68. D.Z. Zhao, X. S. Li, C. Shi, H.Y. Fan and A. M. Zhu, Chem. Eng. Sci., 66(17), 3922 (2011). https://doi.org/10.1016/j.ces.2011.05.019
  69. California Department of Public Health, Emission testing method for California Specification 01350 (2010).
  70. Q. H. Trinh, M. S. Gandhi and Y. S. Mok, Jpn. J. Appl. Phys., 54, 01AG04 (2015). https://doi.org/10.7567/JJAP.54.01AG04
  71. Y. S. Mok and D. H. Kim, Curr. Appl. Phys., 11(5), S58 (2011). https://doi.org/10.1016/j.cap.2011.05.023
  72. X. Xu, P. Wang, W. Xu, J. Wu, L. Chen, M. Fu and D. Ye, Chem. Eng. J., 283, 276 (2016). https://doi.org/10.1016/j.cej.2015.07.050
  73. W. J. Liang, L. Ma, H. Liu and J. Li, Chemosphere, 92(10), 1390 (2013). https://doi.org/10.1016/j.chemosphere.2013.05.042
  74. A. Ogata, K. Yamanouchi, K. Mizuno, S. Kushiyama and T. Yamamoto, Plasma Chem. Plasma Process., 19(3), 383 (1999). https://doi.org/10.1023/A:1021820403362
  75. H.X. Ding, A. M. Zhu, X. F. Yang, C. H. Li and Y. Xu, J. Phys. D: Appl. Phys., 38(23), 4160 (2005). https://doi.org/10.1088/0022-3727/38/23/004
  76. T. Kuroki, K. Hirai, R. Kawabata, M. Okubo and T. Yamamoto, IEEE Trans. Ind. Appl., 46(2), 672 (2010). https://doi.org/10.1109/TIA.2010.2040051
  77. Q.H. Trinh and Y.S. Mok, Catal. Today, 256, 170 (2015). https://doi.org/10.1016/j.cattod.2015.01.027
  78. L. Sivachandiran, F. Thevenet and A. Rousseau, Plasma Chem. Plasma Process., 33(5), 855 (2013). https://doi.org/10.1007/s11090-013-9463-7
  79. L. Sivachandiran, F. Thevenet and A. Rousseau, Chem. Eng. J., 270(15), 327 (2015). https://doi.org/10.1016/j.cej.2015.01.055
  80. K. J. Kim and H. G. Ahn, Micropor. Mesopor. Mater., 152, 78 (2012). https://doi.org/10.1016/j.micromeso.2011.11.051
  81. S. Sultana, A. M. Vandenbroucke, C. Leys, N.D. Geyter and R. Morent, Catalysts, 5(2), 718 (2015). https://doi.org/10.3390/catal5020718
  82. Y. Teramoto, H. H. Kim, N. Negishi and A. Ogata, Catalysts, 5(2), 838 (2015). https://doi.org/10.3390/catal5020838
  83. R.T. Yang and E.S. Kikkinides, AIChE J., 41(3), 509 (1995). https://doi.org/10.1002/aic.690410309
  84. J. Padin and R.T. Yang, Chem. Eng. Sci., 55, 2607 (2000). https://doi.org/10.1016/S0009-2509(99)00537-0
  85. H. Kim, J. Park and Y. Jung, Phys. Chem. Chem. Phys., 15, 19644 (2013). https://doi.org/10.1039/c3cp52980k
  86. H. H. Kim, J. H. Kim and A. Ogata, J. Phys. D: Appl. Phys., 42(13), 135210 (2009). https://doi.org/10.1088/0022-3727/42/13/135210
  87. H. H. Kim, A. Ogata and S. Futamura, Appl. Catal., B, 79(4), 356 (2008). https://doi.org/10.1016/j.apcatb.2007.10.038
  88. Q. H. Trinh, S. B. Lee and Y. S. Mok, J. Hazard. Mater., 285, 525 (2015). https://doi.org/10.1016/j.jhazmat.2014.12.019
  89. W.G. Mallard, F. Westley, J.T. Herron and R. Hampso, NIST chemical kinetics database: Version 2Q98. Gaithersburg, MD, USA: NIST (1998).
  90. C. Subrahmanyam, A. Renken and L. K. Minsker, Appl. Catal., B, 65(1-2), 157 (2006). https://doi.org/10.1016/j.apcatb.2006.02.024
  91. H.Y. Fan, C. Shi, X. S. Li, S. Zhang, J.L. Liu and A.M. Zhu, Appl. Catal., B, 119-120, 49 (2012). https://doi.org/10.1016/j.apcatb.2012.02.016
  92. N. HafezKhiabani, S. Fathi, B. Shokri and S.I. Hosseini, Appl. Catal., A, 493, 8 (2015). https://doi.org/10.1016/j.apcata.2014.12.041
  93. T. Yamamoto, S. Asada, T. Iida and Y. Ehara, IEEE Trans. Ind. Appl., 47(5), 2235 (2011). https://doi.org/10.1109/TIA.2011.2162051
  94. Y. Huang, S. Dai, F. Feng, X. Zhang, Z. Liu and K. Yan, Environ. Sci. Pollut. Res., 22(23), 19240 (2015). https://doi.org/10.1007/s11356-015-5121-3

Cited by

  1. Plasma Catalytic Removal of p-Xylene from Air Stream Using γ-Al2O3 Supported Manganese Catalyst vol.60, pp.12, 2017, https://doi.org/10.1007/s11244-017-0759-3
  2. Non-thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds: a Review vol.228, pp.10, 2016, https://doi.org/10.1007/s11270-017-3574-3
  3. Performance and Pathways of Toluene Degradation over Co/13X by Different Processes Based on Nonthermal Plasma vol.31, pp.10, 2016, https://doi.org/10.1021/acs.energyfuels.7b01657
  4. Consideration of the Role of Plasma in a Plasma-Coupled Selective Catalytic Reduction of Nitrogen Oxides with a Hydrocarbon Reducing Agent vol.7, pp.11, 2016, https://doi.org/10.3390/catal7110325
  5. Plasma Catalytic Removal of Hexanal over Co-Mn Solid Solution: Effect of Preparation Method and Synergistic Reaction of Ozone vol.57, pp.12, 2016, https://doi.org/10.1021/acs.iecr.8b00191
  6. Tailoring the wettability of glass using a double-dielectric barrier discharge reactor vol.4, pp.1, 2018, https://doi.org/10.1016/j.heliyon.2018.e00522
  7. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal: a review vol.8, pp.4, 2016, https://doi.org/10.1039/c7cy01934c
  8. The Mechanism of Non-thermal Plasma Catalysis on Volatile Organic Compounds Removal vol.22, pp.2, 2018, https://doi.org/10.1007/s10563-018-9241-x
  9. Toluene abatement through adsorption and plasma oxidation using ZSM-5 mixed with γ-Al2O3, TiO2 or BaTiO3 vol.63, pp.None, 2016, https://doi.org/10.1016/j.jiec.2018.03.005
  10. A Hybrid Reactor System Comprised of Non-Thermal Plasma and Mn/Natural Zeolite for the Removal of Acetaldehyde from Food Waste vol.8, pp.9, 2016, https://doi.org/10.3390/catal8090389
  11. Direct methanol synthesis from methane in a plasma-catalyst hybrid system at low temperature using metal oxide-coated glass beads vol.8, pp.None, 2016, https://doi.org/10.1038/s41598-018-28170-x
  12. Infrared studies of gas phase and surface processes of the enhancement of catalytic methane decomposition by low temperature plasma vol.52, pp.22, 2016, https://doi.org/10.1088/1361-6463/ab0c66
  13. Methanol plasma-catalytic oxidation over CeO2 catalysts: Effect of ceria morphology and reaction mechanism vol.369, pp.None, 2016, https://doi.org/10.1016/j.cej.2019.03.067
  14. Decomposition of volatile organic compounds using corona discharge plasma technology vol.69, pp.8, 2016, https://doi.org/10.1080/10962247.2019.1582441
  15. Fabrication and characterization of decylic acid-palmitic acid based Ce-Eu doped TiO2composites vol.6, pp.11, 2016, https://doi.org/10.1088/2053-1591/ab47af
  16. Molecular dynamics simulation of dielectric barrier discharge-photocatalyst synergistic treatment of volatile organic compounds vol.9, pp.11, 2016, https://doi.org/10.1063/1.5117253
  17. Effective removal of toluene at near room temperature using cyclic adsorption-oxidation operation in alternative fixed-bed plasma-catalytic reactor vol.164, pp.None, 2016, https://doi.org/10.1016/j.cherd.2020.10.006
  18. Simultaneous removal of toluene and styrene by non-thermal plasma-catalysis: Effect of VOCs interaction and system configuration vol.263, pp.None, 2016, https://doi.org/10.1016/j.chemosphere.2020.127893
  19. Non-thermal plasma coupled with catalysis for VOCs abatement: A review vol.153, pp.None, 2016, https://doi.org/10.1016/j.psep.2021.06.028
  20. Elimination or Removal of Ethylene for Fruit and Vegetable Storage via Low-Temperature Catalytic Oxidation vol.69, pp.36, 2016, https://doi.org/10.1021/acs.jafc.1c02868