DOI QR코드

DOI QR Code

Fuel characteristics of agropellets fabricated with rice straw and husk

  • Yang, In (Department of Wood and Paper Science, Chungbuk National University) ;
  • Kim, Seong-ho (Department of Wood and Paper Science, Chungbuk National University) ;
  • Sagong, Moon (Shin Heung Industry Co., Ltd.) ;
  • Han, Gyu-Seong (Department of Wood and Paper Science, Chungbuk National University)
  • Received : 2015.03.09
  • Accepted : 2015.10.11
  • Published : 2016.03.01

Abstract

Our aim was to identify the potential of rice straw (RS) and rice husk (RH) as raw materials for pellet production. Compared to woody biomass, RS and RH can be easily dried, but contain significant levels of ash. Higher heating values of oven-dried RS and RH are slightly lower than those of commercial wood pellets. RS and RH contain substantially more silicon, potassium and calcium than larch sawdust. However, ash and moisture contents of RS was significantly reduced following a 15-week exposure period on rice paddy. These results suggest that RS and RH present suitable alternatives to wood as raw materials for pellet production due to their availability, relatively high calorific value and low moisture content. The durability of RS and RH pellets improved steadily with increasing pelletizing temperature and time. Pelletization under appropriate conditions also enabled the durability and bulk density of RS and RH to be improved, enhancing their potential as alternative combustion fuels.

Keywords

Acknowledgement

Grant : 농업부산물 활용 펠릿제조 기술개발

Supported by : 신흥기업 주식회사

References

  1. C. Boman, M. Ohman and A. Nordin, Energy Fuels, 20, 993 (2006). https://doi.org/10.1021/ef050375b
  2. B. Hillring and J. Vinterback, For. Prod. J., 48, 68 (1998).
  3. International Wood Market Groups, Monthly International Report - Wood Pellets Markets/Trends, http://www.unecefaoiufro.lsu.edu/marketing/documents/2010/gme10_03.pdf, Vancouver (2010).
  4. S. B. McLaughlin and M. E. Walsh, Biomass Bioenergy, 14, 318 (1998).
  5. D. J. Parrish and J. H. Fike, Crit. Rev. Plant Sci., 24, 424 (2005).
  6. Y. H. Kim, B. I. Na, B. J. Ahn, H.W. Lee and J.W. Lee, Korean J. Chem. Eng., 32(8), 1547 (2015).
  7. W. Stelte, J. K. Holm, A.R. Sanadi, S. Barsberg, J. Ahrenfeldt and U. B. Henriksen, Biomass Bioenergy, 35, 911 (2011).
  8. I. Obernberger and G. Thek, Biomass Bioenergy, 27, 659 (2004).
  9. Korean Statistical Information Service, Rice production, http://kosis.kr/nsieng/view/Stat10. do, Daejeon (2013).
  10. R. Govett, T. Mace and S. Bowe, A practical guide for the determination of moisture content of woody biomass, http://dnr.wi.gov/topic/ForestBusinesses/documents/BiomassMoistureContent.pdf, Madison (2010).
  11. National Renewable Energy Laboratory, Determination of ash in biomass, Technical Report of NREL/TP-510-42622, Golden (2008).
  12. Association of Official American Chemists, Analytical methods for chemical composition, Academic Press, Arlington (1990).
  13. National Renewable Energy Laboratory, Determination of structural carbohydrates and lignin in biomass, Technical Report of NREL/TP-510-42618, Golden (2011).
  14. R. Samson, S. Mani, R. Boddey, S. Sokhansanj, D. Quesada, S. Urquiaga, V. Reis and C. H. Lem, Crit. Rev. Plant Sci., 24, 482 (2005).
  15. A. Demirbas, Eng. Sources, 25(7), 684 (2003).
  16. C. Goncalves, H. Tran, S. Braz, F. Puig and R. Shenassa, Pulp Paper Canada, 109(3), 34 (2008).
  17. Korea Forest Research Institute, Standard for the quality of wood pellets, Seoul (2013).
  18. D.W. Kim, J.M. Lee, J. S. Kim and P.K. Seon, Korean Chem. Eng. Res., 48, 60 (2010).
  19. S. M. Lee, B. J. Ahn, D. H. Choi, G. S. Han, H. S. Jeong, S. H. Ahn and I. Yang, Biomass Bioenergy, 48, 7 (2013).
  20. N. Kaliyan and R. V. Morey, Biomass Bioenergy, 33, 342 (2009).
  21. European Committee for Standardization, Specification of wood pellets for non-industrial use, European Standards EN 14961-2, Brussels (2010).
  22. Y. Hui, Comparison of woody pellets, straw pellets, and delayed harvest system herbaceous biomass (switchgrass and miscanthus): Analysis of current combustion techniques determining the value of biomass, http://edepot.wur.nl/192415 (2013).
  23. European Committee for Standardization, Solid biofuels - Fuel specification and classes - Part 6: Nonwoody pellets for non-industrial use, European Standards EN 14961-6, Brussels (2012).
  24. R. H. White, Wood and Fiber Sci., 19(4), 450 (1987).
  25. T.K. Dhamodaran, R. Gnanaharan and P.K. Thulasidas, Wood Sci. Technol., 23, 24 (1989).
  26. T. Cordero, F. Marquez, J. Rodriguez-Mirasol and J. Rodriguez, Fuel, 80, 1569 (2001).
  27. B. M. Jenkins, L. L. Baxter, T.R. Miles, Jr. and T.R. Miles, Fuel Processing Technol., 54, 27 (1998).
  28. F. Lu and J. Ralph, Cereal straws as a resource for sustainable biofuels and biomaterials, R. C. Sun Ed., Elsevier, Amsterdam (2010).
  29. N. Said, M. M. Abdel, A. Garcia-Maraver and M. Zamorano, Bioresources, 9(4), 6756 (2014).
  30. B. J. Ahn, H. Chang, S.M. Lee, D.H. Choi, S.T. Cho, G.S. Han and I. Yang, Renewable Eng., 62, 22 (2014).

Cited by

  1. 갈대를 이용하여 제조한 바이오펠릿의 품질 특성 vol.48, pp.3, 2016, https://doi.org/10.7584/ktappi.2016.48.3.099
  2. Effect of Moisture Content of Sawdust and Length to Diameter Ratio of a Hole in Flat-die Pelletizer on The Fuel Characteristics of Wood Pellets Produced with Quercus mongolica, Pinus densiflora, Pinus vol.45, pp.4, 2016, https://doi.org/10.5658/wood.2017.45.4.382
  3. Growing up at Different Altitudes: Changes in Energy Content of the Abies religiosa Wood vol.11, pp.1, 2016, https://doi.org/10.1007/s12155-017-9889-5
  4. Spontaneous Emission Measurements of Selected Alkali Radicals during the Combustion of a Single Biomass Pellet vol.32, pp.10, 2016, https://doi.org/10.1021/acs.energyfuels.8b01002
  5. Production, Characterization, and Evaluation of Pellets from Rice Harvest Residues vol.13, pp.2, 2016, https://doi.org/10.3390/en13020479
  6. Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation vol.13, pp.11, 2020, https://doi.org/10.3390/en13112937
  7. New fuel indexes to predict ash behavior for biogenic silica production vol.310, pp.no.pb, 2016, https://doi.org/10.1016/j.fuel.2021.122345