DOI QR코드

DOI QR Code

Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer

  • Lee, Kyu-Yeon (Department of Materials Science and Engineering, Yonsei University) ;
  • Jung, Hae-Noo-Ree (Department of Materials Science and Engineering, Yonsei University) ;
  • Mahadik, D.B. (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2016.06.30
  • Accepted : 2016.09.24
  • Published : 2016.09.30

Abstract

In an effort to overcome the weakness of aerogel, polymer aerogels have been prepared by copolymerizing the different types of monomers through sol-gel process. Polymerizing the successive phase of a high internal phase emulsion, which has interconnected porous structure, porous polymer aerogel can be manufactured. In this paper, we use the styrene/divinylbenzene chain as a basic monomer structure, and additionally use 2-ethylhexyl methacrylate (2-EHMA) or 2-ethylhexyl acrylate (2-EHA) as monomers for distinguishing the visible mechanical properties of synthesized polymer aerogel. We can observe the different tendency of polymer aerogels by kinds of monomer or ratio. Flexibility and microstructure can be changed by the types of monomer. EHA polymer aerogel shows high flexibility and thin microstructure, and EHMA polymer aerogel shows high hardness and thick microstructure. EHA/EHMA polymer aerogel shows the intermediate nature between them. By utilizing the mechanical properties of three types of polymer aerogels to adequate situation or environment, polymer aerogels could be used as drug agent, ion exchange resin, oil filter and insulator, and so on.

Keywords

References

  1. S. Mulik, C. Sotiriou-Leventis, G. Churu, H. Lu and N. Leventis, "Cross-Linking 3D Assemblies of Nanoparticles into Mechanically Strong Aerogels by Surface-Initiated Free-Radical Polymerization", Chem. Mater., 20, 5035 (2008). https://doi.org/10.1021/cm800963h
  2. X. Hu, K. Littrel, S. Ji, D. G. Pickles and W. M. Risen, "Characterization of Silica-polymer Aerogel Composites by Smallangle Neutron Scattering and Transmission Electron Microscopy", J. Non-Cryst. Solids, 288, 184 (2001). https://doi.org/10.1016/S0022-3093(01)00625-1
  3. S. J. Wang, H. H. Park and G. Y. Yeom, "A Preliminary Study on the Etching Behavior of $SiO_2$ Aerogel Film with $CHF_3$ Gas", J. Korean Phys. Soc., 33, S135 (1998).
  4. D. Ge, L. Yang, Y. Li and J. Zhao, "Hydrophobic and Thermal Insulation Properties of Silica Aerogel/Epoxy Composite", J. Non-Cryst. Solids, 355, 2610 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.09.017
  5. N. Kuthirummal, A. Dean, C. Yao and W. Risen, "Photo-formation of Gold Nanoparticles: Photoacoustic Studies on Solid Monoliths of Au(III)-chitosan-silica Aerogels", Spectrochim. Acta A, 70, 700 (2008). https://doi.org/10.1016/j.saa.2007.09.011
  6. J. T. Seo, S. M. Ma, Q. Yang, L. Creekmore, H. Brown, R. Battle, K. Lee, A. Jackson, T. Skyles, B. Tabibi, K. P. Yoo, S. Y. Kim, S. S. Jung and M. Namkung, "Large Optical Nonlinearity of Highly Porous Silica Nanoaerogels in the Nanosecond Time Domain", J. Korean Phys. Soc., 48, 1395 (2006).
  7. M. F. Bertino, J. F. Hund, G. Zhang, C. Sotiriou-leventis, A. T. Tokuhiro and N. Leventis, "Room Temperature Synthesis of Noble Metal Clusters in the Mesopores of Mechanically Strong Silica-Polymer Aerogel Composites", J. Sol-gel Sci. Techn., 30, 43 (2004). https://doi.org/10.1023/B:JSST.0000028178.25991.9e
  8. J. Chandradass, S. Kang and D. S. Bae, "Synthesis of Silica Aerogel Blanket by Ambient Drying Method Using Water Glass Based Precursor and Glass Wool Modified by Alumina Sol", J. Non-Cryst. Solids, 354, 4115 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.03.039
  9. N. R. Cameron, "High Internal Phase Emulsion Templating as a Route to Well-defined Porous Polymers", Polymer, 46, 1439 (2005). https://doi.org/10.1016/j.polymer.2004.11.097
  10. U. Sevsek, S. Seifried, C. Stropnik, I. Pulko and P. Krajnc, "Poly(styrene-co-divinylbenzene-co-2-ethylhexyl)acrylate Membranes with Interconnected Macroporous Structure", Mater. Tehnol., 45(3), 247 (2011).
  11. Y. Lin, T. Li and Y. Liu, "Properties of Absorbent Acrylic Foam Prepared Based on the Method of High Internal Phase Emulsion", J. Macromol. Sci. B, 54, 102 (2015). https://doi.org/10.1080/00222348.2014.987061
  12. H. G. Jeoung, S. J. Ji and S. J. Lee, "Morphology and Properties of Microcellular Foams by High Internal Phase Emulsion Polymerization: Effect of Emulsion Compositions", Polymer (Korea), 26(6), 759 (2002).
  13. J. M. Williams, "Toroidal Microstructures from Water-in-oil Emulsions", Langmuir, 4(1), 44 (1988). https://doi.org/10.1021/la00079a007
  14. J. M. Williams and D. A. Wrobleski, "Spatial Distribution of the Phases in Water-in-oil Emulsions. Open and Closed Microcellular Foams from Cross-linked Polystyrene", Langmuir, 4(3), 656 (1988). https://doi.org/10.1021/la00081a027
  15. J. B. Ni, H. Li, X. D. Zhang and D. Y. Gao, "Superabsorbent Polymer for Sanitary Application", Chem. Engi., 4, 46 (2009).
  16. X. W. He, "Carbohydrate Superabsorbent Material", Chem Industry Press, China (2006).
  17. W. Y. Zhang, X. Li, J. C. Liu and R. R. Huang, "Preparation and Properties of Sodium Polyacrylate Superabsorbent", Fine Chem, 3, 531 (2000).
  18. W. L. Xu, X. D. Wang and J. F. Chen, "Study on Inverse Suspension Polymerization of a Water Absorbent Polyacrylic Acid", Fine Chem, 4, 202 (2000).
  19. Z. B. Luo, C. F. Lin, X. F. Wen and Z. Q. Cai, "Preparation and Performance Research of PVA Formaldehyde Absorbent Sponge", Plastics Ind., 8, 77 (2012).
  20. J. P. Wu and S. N. Kim, "A study on the Microcellular Foam via Inverse Emulsion Polymerization", Polymer (Korea), 22, 642 (1998).
  21. P. Krajnc, D. Stefanec and I. Pulko, "Acrylic Acid "Reversed" PolyHIPEs", Macromol. Rapid Comm., 26, 1289 (2005). https://doi.org/10.1002/marc.200500353
  22. S. Kovacic, D. Stefanec and P. Krajnc, "Highly Porous Open- Cellular Monoliths from 2-Hydroxyethyl Methacrylate Based High Internal Phase Emulsions (HIPEs): Preparation and Void Size Tuning", Macromolecules, 40, 8056 (2007). https://doi.org/10.1021/ma071380c
  23. N. R. Cameron and D. C. Sherrington, "Preparation and Glass Transition Temperatures of Elastomeric PolyHIPE Materials", J. Mater. Chem., 7(11), 2209 (1997). https://doi.org/10.1039/a702030i
  24. F. Svec, T. B. Tennikova and Z. Deyl, "Monolithic Materials: Preparation, Properties and Applications", Elsevier, 67, 261 (2003).
  25. W. J. Han, B. Y. Yoo and H. H. Park, "Study on the Agglomeration of $BaTiO_3$ Nanoparticles with Differential Synthesis Route", J. Microelectron. Packag. Soc., 22(2), 33 (2015). https://doi.org/10.6117/kmeps.2015.22.2.033
  26. D. B. Mahadik, H. N. R. Jung, Y. K. Lee, K. Y. Lee and H. H. Park, "Elastic and Superhydrophobic Monolithic Methyltrimethoxysilane- based Silica Aerogels by Two-step Sol-gel Process", J. Microelectron. Packag. Soc., 23(1), 35 (2016). https://doi.org/10.6117/kmeps.2016.23.1.035
  27. D. L. Pavia, G. M. Lampman and G. S. Kaiz, "Introduction to Spectroscopy: A Guide for Students of Organic Chemistry", W. B. Saunders Company, St. Louis (1987).
  28. X. Lu and Z. Xin, "Synthesis of Poly(styrene-co-3-trimethoxysilyl propyl methacrylate) Microspheres Coated with Polysiloxane Layer", Colloid Polym. Sci., 285, 599 (2007). https://doi.org/10.1007/s00396-006-1609-1
  29. A. Y. Sergienko, H. Tai, M. Narkis and M. S. Silverstein, "Polymerized High Internal-Phase Emulsions: Properties and Interaction with Water", J. Appl. Polym. Sci., 84, 2018 (2002). https://doi.org/10.1002/app.10555

Cited by

  1. Flexible and Transparent Silica Aerogels: An Overview vol.54, pp.3, 2017, https://doi.org/10.4191/kcers.2017.54.3.12
  2. Superhydrophobic and Compressible Silica-polyHIPE Covalently Bonded Porous Networks via Emulsion Templating for Oil Spill Cleanup and Recovery vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34997-1
  3. 산 촉매가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향 vol.24, pp.3, 2017, https://doi.org/10.6117/kmeps.2017.24.3.013