DOI QR코드

DOI QR Code

Aerodynamic Features of Maple Seeds in the Autorotative Flight

자동회전 비행을 하는 단풍나무 씨앗의 항공역학적 특성

  • Sohn, Myong Hwan (Department of Aeronautical and Mechanical Engineering, Cheongju University)
  • Received : 2016.08.09
  • Accepted : 2016.08.30
  • Published : 2016.10.01

Abstract

The autorotative flight of maple seeds(Acer palmatum) is numerically simulated based on the 3D geometry and the motion parameters of real seeds. The nominal values of the motion parameters are 1.26 m/s for descent velocity, 133.6 rad/s (1,276 rpm) for spinning rate, $19.4^{\circ}$ for coning angle, and $-1.5^{\circ}$ for pitch angle. A compact leading-edge vortex (LEV) positioned at the inner span of the seed blade causes a large suction pressure on its leeward surface. The suction pressure peaks occur near the leading region of inner span sections. The flow pattern characterized by the prominent LEV and the values of aerodynamic force coefficients obtained in the present study are in good agreement with experimental data measured for a dynamically-scaled robot maple seeds. A spiraling vortex developed in the leeward region advances toward the seed tip and merges with the tip-passing flow, which is considered to be a mechanism of maintaining stable and attached LEV for the autorotating maple seeds.

실제 씨앗의 3차원 형상과 운동요소에 기반하여 단풍나무(Acer palmatum 종) 씨앗의 자동회전 비행을 수치적으로 해석하였다. 운동요소의 표준 값은 낙하속도는 1.26 m/s, 회전속도는 133.6 rad/s (1,276 rpm), 코닝 각은 $19.4^{\circ}$, 피치 각은 $-1.5^{\circ}$이다. 씨앗 날개의 스팬 안쪽에 위치한 컴팩트한 앞전 와류가 씨앗 날개 바람 반대면에 커다란 부압을 발생하게 하였다. 부압의 피크는 안쪽 스팬 단면 앞전 부근에 발생하였다. 본 연구에서 얻어진 현저한 앞전 와류로 특징되는 흐름 형태와 공기력 계수의 값은 동적 상사를 갖도록 한 로봇 씨앗에 대하여 실험적으로 측정한 자료와 잘 일치하였다. 바람 반대 영역에 발달한 나선형 와류는 씨앗 끝을 향하여 전진하고 씨앗 끝 부분에서 이곳을 지나는 흐름과 합쳐지는데, 이와 같은 흐름이 자동회전하는 단풍나무 씨앗의 안정되고 부착된 LEV를 유지하게 하는 메카니즘으로 여겨진다.

Keywords

References

  1. Bullock, J. M. R., Kenward, R., and Hails, E. R., "Dispersal Ecology (Blackwell, Malden, MA)," 2002.
  2. Minami, S. and Azuma, A., "Various Flying Modes of Wind-dispersal Seeds," J. Theo. Biol., Vol. 225, 2003, pp.1-14. https://doi.org/10.1016/S0022-5193(03)00216-9
  3. Lentink, D., Dickson, W. B., van Leeuwen, J. L., and Dickinson, M. H., "Leading edge Vortices Elevate Lift of Autorotating Plant Seed," Science Vol.324, 2009, pp.1438-1440. https://doi.org/10.1126/science.1174196
  4. Norberg, R. A., "Autorotation, Self-stability, and Structure of Single-winged Fruits and Seeds(samaras) with Comparative Remarks on Animal Flight," Biol. Rev.," Vol. 48, 1973, pp.561-596.
  5. Azuma, A. and Yasuda, K., "Flight Performance of Rotary Seeds," J. Theo. Biol. Vol. 138, 1989, pp.23-53. https://doi.org/10.1016/S0022-5193(89)80176-6
  6. Yasuda, K. and Azuma, A. "The Autorotation Boundary in the Flight of Samaras," J. Theo. Biol., Vol. 185, 1997, pp.313-320. https://doi.org/10.1006/jtbi.1996.0299
  7. Lee, S. J., Lee, E. J., and Sohn, M. H., "Mechanism of Autorotation Flight of Maple Samaras," Experiments in Fluids, Vol. 55, 2014, 1718. https://doi.org/10.1007/s00348-014-1718-4
  8. Ellington, C. P., van den Berg, C., Willmott, A. P., Thomas, A. L. R., "Leading-edge Vortices in Insect Flight," 1996, Nature, Vol. 384, pp.626-630. https://doi.org/10.1038/384626a0
  9. Birch, J. M., Dickson, W. B., and Dickinson, M. H., "Force Production and Flow Structure of the Leading Edge Vortex on Flapping Wings at High and Low Reynolds Numbers," J. Exp. Biol. Vol. 207, 2004, pp.1063-1072. https://doi.org/10.1242/jeb.00848
  10. Shyy, W. and Liu, H., "Flapping Wings and Aerodynamic Lift: the Role of Leading-edge Vortices," AIAA J., Vol. 45, 2007, pp.2817-2819. https://doi.org/10.2514/1.33205
  11. Yamada, T. and Ito, A., "Measurements of Pressure Distribution Acting on Autorotating Samara," Ryutai Rikigaku Koenkai Koenshu, Vol. 33, 2001, pp.197-200.