DOI QR코드

DOI QR Code

Acquisition of Subcentimeter GSD Images Using UAV and Analysis of Visual Resolution

UAV를 이용한 Subcentimeter GSD 영상의 취득 및 시각적 해상도 분석

  • Han, Soohee (Dept. of Geoinformatics Engineering, Kyungil University) ;
  • Hong, Chang-Ki (Dept. of Geoinformatics Engineering, Kyungil University)
  • Received : 2017.11.30
  • Accepted : 2017.12.10
  • Published : 2017.12.31

Abstract

The purpose of the study is to investigate the effect of flight height, flight speed, exposure time of camera shutter and autofocusing on the visual resolution of the image in order to obtain ultra-high resolution images with a GSD less than 1cm. It is also aimed to evaluate the ease of recognition of various types of aerial targets. For this purpose, we measured the visual resolution using a 7952*5304 pixel 35mm CMOS sensor and a 55mm prime lens at 20m intervals from 20m to 120m above ground. As a result, with automatic focusing, the visual resolution is measured 1.1~1.6 times as the theoretical GSD, and without automatic focusing, 1.5~3.5 times. Next, the camera was shot at 80m above ground at a constant flight speed of 5m/s, while reducing the exposure time by 1/2 from 1/60sec to 1/2000sec. Assuming that blur is allowed within 1 pixel, the visual resolution is 1.3~1.5 times larger than the theoretical GSD when the exposure time is kept within the longest exposure time, and 1.4~3.0 times larger when it is not kept. If the aerial targets are printed on A4 paper and they are shot within 80m above ground, the encoded targets can be recognized automatically by commercial software, and various types of general targets and coded ones can be manually recognized with ease.

본 연구의 목적은 회전익 UAV를 이용하여 1cm 미만의 GSD를 갖는 초고해상도 영상을 취득하기 위해 비행고도, 비행속도, 카메라 셔터의 노출시간, 자동초점조절 사용 여부가 영상의 시각적 해상도에 미치는 영향을 객관적으로 분석하는 것이다. 아울러 다양한 형태의 항공표적에 대한 인식 용이성을 평가하는 것도 목표로 한다. 이를 위해 35mm 크기의 7952*5304 화소 CMOS 센서와 55mm 단렌즈를 이용하여 비행고도 20m부터 120m에서 20m 간격으로 촬영하고 영상의 시각적 해상도를 분석하였다. 결과로 자동초점조절을 사용한 경우 시각적 해상도는 이론적인 GSD에 비하여 1.1~1.6배로 나타났고, 자동초점조절을 사용하지 않은 경우 1.5~3.5배로 나타났다. 다음으로 비행고도 80m에서 5m/s로 정속 비행하면서 카메라의 노출 시간을 1/60sec에서 1/2000sec까지 1/2씩 줄이면서 촬영하고 시각적 해상도를 분석하였다. 허용 흐려짐을 1 화소로 가정할 때 최장 노출 시간을 준수한 경우 시각적 해상도 는 이론적인 GSD이 비하여 1.3~1.5배로 나타났고, 초과한 경우 1.4~3.0배로 나타났다. A4 용지에 항공표적을 출력하여 비행고도 80m 이내에서 촬영하면 상용소프트웨어를 이용하여 코드화된 항공표적을 자동으로 인식할 수 있으며, 자동 인식이 불가능한 고도에서도 다양한 형태의 일반 항공표적 및 코드화된 항공표적을 큰 어려움 없이 수동으로 인식할 수 있었다.

Keywords

References

  1. Agisoft (2017), Agisoft photoscan, Agisoft LLC, http://www.agisoft.com (last Data accessed: 29 November 2017).
  2. Edmund Optics (2017), Introduction to modulation transfer function, Edmund Optics Inc., https://goo.gl/DkskGM (last Data accessed: 15 December 2017).
  3. Han, S.H. (2017), High-resolution and high-definition image acquisition using UAV and high-precision aerial triangulation, Journal of the Korean Society for Geospatial Information Science, Vol. 25, No. 3, pp. 101-109. (in Korean with English abstract) https://doi.org/10.7319/kogsis.2017.25.3.101
  4. Imatest (2017), Imatest(R) products focused on image quality, Imatest LLC, http://www.imatest.com/products (last Data accessed: 29 November 2017).
  5. Lee, S.C., Kim, J.H., and Um, J.S. (2017), Accuracy and economic evaluation for utilization of national/public land actual condition survey using UAV images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 35, No. 3, pp. 175-186. (in Korean with English abstract) https://doi.org/10.7848/KSGPC.2017.35.3.175
  6. Lee, T.Y. (2012), Spatial Resolution Analysis of Aerial Digital Camera, Ph.D. dissertation, Dong-A University, Busan, Korea, pp. 16-17. (in Korean with English abstract)
  7. Lee, Y.C. (2015), Assessing the positioning accuracy of high density point clouds produced from rotary wing quadrocopter unmanned aerial system based imagery, Journal of the Korean Society for Geospatial Information Science, Vol. 23, No. 2, pp. 39-48. (in Korean with English abstract)
  8. Mansurov, N. (2015), Best and worst Sony FE lenses for A7 cameras, Photography Life, https://goo.gl/9XPJfk (last Data accessed: 15 December 2017).
  9. Mansurov, N. (2017), How to read MTF charts, Photography Life, https://goo.gl/wLmpwf (last Data accessed: 15 December 2017).
  10. Manyoky, M., Theiler, P.W., Steudler, D., and Eisenbeiss, H. (2011), Unmanned aerial vehicle in cadastral applications, Proceedings of ISPRS Zurich 2011 Workshop, ISPRS, Zurich, Switzerland, pp. 57-62.
  11. Rijsdijk, M., van Hinsbergh, W.H.M., Witteveen, W., ten Buuren, G.H.M., Schakelaar, G.A., Poppinga, G., van Persie, M., and Ladiges, R. (2013), Unmanned aerial systems in the process of juridical verification of cadastral border, Proceedings of UAV-g 2013, ISPRS, Rostock, Germany, pp. 325-331.
  12. Sung, S.M. and Lee, J.O. (2016), Accuracy of parcel boundary demarcation in agricultural area using UAVphotogrammetry, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 34, No. 1, pp. 53-62. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2016.34.1.53

Cited by

  1. 무인항공 영상을 이용한 공간정보 응용 시스템 활용 방안 vol.17, pp.2, 2017, https://doi.org/10.14400/jdc.2019.17.2.201