DOI QR코드

DOI QR Code

Enhanced Electrochemical Properties of NCA Cathode Materials for Lithium Ion Battery by Doping Effect

도핑효과에 따른 리튬이차전지용 NCA 양극활물질의 전기화학적 특성 향상

  • Fan, Zhi Yu (Department of Chemical Engineering, Chungbuk National University) ;
  • Jin, n Mei (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • 범지우 (충북대학교 화학공학과) ;
  • 김은미 (충북대학교 화학공학과) ;
  • 정상문 (충북대학교 화학공학과)
  • Received : 2017.07.04
  • Accepted : 2017.07.28
  • Published : 2017.12.01

Abstract

In order to improve the capacity and cycling stability of Ni-rich NCA cathode materials for lithium ion batteries, the boron and cobalt were doped in commercial $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA) powders. Commercial NCA particles are mixed composites such as secondary particles of about $5{\mu}m$ and $12{\mu}m$, and the particle size was decreased by doping boron and cobalt. The initial discharge capacities of the boron and cobalt doped NCA-B and NCA-Co were found to be 214 mAh/g and 200 mAh/g, respectively, which are higher values than that of the raw NCA cathode material. In particular, NCA-Co exhibits the best discharge capacity of 157 mAh/g after 20 cycles, which is probably due to the enhanced diffusion of lithium ion by crystal growth along with the c-axis direction.

니켈 함량이 높은 리튬이차전지용 NCA 양극소재의 용량 및 수명특성을 향상시키기 위하여 붕소와 코발트를 상업용 $Li_{1.06}Ni_{0.91}Co_{0.08}Al_{0.01}O_2$ (NCA)에 도핑하여 리튬이차전지의 양극소재로 사용하였다. 상업용 NCA 양극소재는 약 $5{\mu}m$$12{\mu}m$ 크기의 2차 입자들이 혼합되어 있고 붕소와 코발트 도핑후 입자크기는 조금 감소되었다. 붕소와 코발트를 도핑한 NCA-B와 NCA-Co의 초기 방전용량은 각각 214 mAh/g과 200 mAh/g으로 도핑하지 않은 NCA에 비해 높게 나타났으며, 특히 NCA-Co는 20번째의 방전용량이 157 mAh/g으로 가장 우수한 방전용량특성을 나타내었다. 이는 코발트를 도핑함으로써 c축 방향으로의 결정이 성장되어 리튬이온의 확산이 용이하기 때문이다.

Keywords

References

  1. Park, H. Y., Yeom, D. H., Kim, J. Y. and Lee, J. K., "MnO/C Nanocomposite Prepared by One-pot Hydrothermal Reaction for High Performance Lithium-ion Battery Anodes," Korean J. Chem. Eng., 32(1), 178-183(2015). https://doi.org/10.1007/s11814-014-0265-2
  2. Vu, D. L. and Lee, J. W., "Properties of $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_{2}$ as a High Energy Cathode Material for Lithium-ion Batteries," Korean J. Chem. Eng., 33(2), 514-526(2016). https://doi.org/10.1007/s11814-015-0154-3
  3. Kannan, A. M. and Manthiram, A., "Structural Stability of $Li_{1-x}Ni_{0.85}Co_{0.15}O_{2}$ and $Li_{1-x}Ni_{0.85}Co_{0.12}Al_{0.03}O_{2}$ Cathodes at Elevated Temperatures," J. Electrochem. Soc., 150(3), A349-A353(2003). https://doi.org/10.1149/1.1553766
  4. Omanda, H., Brousse, T., Marhic, C. and Schleich, D. M., "Improvement of the Thermal Stability of $LiNi_{0.8}Co_{0.2}O_{2}$ Cathode by a $SiO_{x}$ Protective Coating," J. Electrochem. Soc., 151(6), A922-A929(2004). https://doi.org/10.1149/1.1710892
  5. Delmas, C. and Croguennec, L., "Layered $Li(Ni, M)O_{2}$ Systems as the Cathode Material in Lithium-Ion Batteries," Mater. Res. Soc. Bull., 27(8), 608-612(2002). https://doi.org/10.1557/mrs2002.196
  6. Majumder, S. B., Nieto, S. and Katiyar, R. S., "Synthesis and Electrochemical Properties of $LiNi_{0.80}(Co_{0.20-x}Al_{x})O_{2}$ (x=0.0 and 0.05) Cathodes for Li Ion Rechargeable Batteries," J. Power Source, 154(1), 262-267(2006). https://doi.org/10.1016/j.jpowsour.2005.03.186
  7. Jin, E. M., Lee, G. E., Na, B. K. and Jeong, S. M., "Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery," Korean Chem. Eng. Res., 55(2), 163-169 (2017). https://doi.org/10.9713/KCER.2017.55.2.163
  8. Kondo, H., Takeuchi, Y., Sasaki, T., Kawauchi, S., Itou, Y., Hiruta, O., Okuda, C., Yonemura, M., Kamiyama, T. and Ukyo, Y., "Effects of Mg-substitution in $Li(Ni,Co,Al)O_{2}$ Positive Electrode Materials on the Crystal Structure and Battery Performance," J. Power Source, 174(2), 1131-1136(2007). https://doi.org/10.1016/j.jpowsour.2007.06.035
  9. Xie, H., Du, K., Hu, G., Peng, Z. and Cao, Y., "The Role of Sodium in $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ Cathode Material and Its Electrochemical Behaviors," J. Phys. Chem. C, 120(6), 3235-3241(2016). https://doi.org/10.1021/acs.jpcc.5b12407
  10. Lai, Y. Q., Xu, M., Zhang, Z. A., Gao, C. H., Wang, P. and Yu, Z. Y., "Optimized Structure Stability and Electrochemical Performance of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ by Sputtering Nanoscale ZnO Film," J. Power Sources, 309, 20-26(2016). https://doi.org/10.1016/j.jpowsour.2016.01.079
  11. Liu, J., Wang, S., Ding, Z., Zhou, R., Xia, Q., Zhang, J., Chen, L., Wei, W. and Wang, P., "The Effect of Boron Doping on Structure and Electrochemical Performance of Lithium-Rich Layered Oxide Materials," ACS Appl. Mater. Interfaces, 8(28), 18008-18017(2016). https://doi.org/10.1021/acsami.6b03056
  12. Li, B., Yan, H., Ma, J., Yu, P., Xia, D., Huang, W., Chu, W. and Wu, Z., "Manipulating the Electronic Structure of Li-Rich Manganese-Based Oxide Using Polyanions: Towards Better Electrochemical Performance," Adv. Funct. Mater., 24(32), 5112-5118 (2014). https://doi.org/10.1002/adfm.201400436
  13. Xie, H., Hu, G., Du, K., Peng, Z. and Cao, Y., "An Improved Continuous Co-Precipitation Method to Synthesize $LiNi_{0.80}Co_{0.15}Al_{0.05}O_{2}$ Cathode Material," J. Power Sources, 666, 84-87(2016).
  14. Hu, G., Liu, W., Peng, Z., Du, K. and Cao, Y., "Synthesis and Electrochemical Peoperties of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ Prepared from the Precursor $Ni_{0.8}Co_{0.15}Al_{0.05}OOH$," J. Power Sources, 198, 258-263(2012). https://doi.org/10.1016/j.jpowsour.2011.09.101
  15. Dahn, J. R., Sacken, U. V. and Michal, C. A., "Structure and Electrochemistry of $Li_{1{\pm}y}NiO_{2}$ and a New $Li_{2}NiO_{2}$ Phase with the $Ni(OH)_{2}$ Structure," Solid State Ionics 44(1), 87-97(1990). https://doi.org/10.1016/0167-2738(90)90049-W
  16. Reimers, J. N., Rossen, E., Jones, C. D. and Dahn, J. R., "Structure and Electrochemistry of $Li_{x}FeyNi_{1-y}O_{2}$," Solid State Ionics, 61(4), 335-344(1993). https://doi.org/10.1016/0167-2738(93)90401-N
  17. Wu, K., Wang, F., Gao, L., Li, M. R., Xiao, L., Zhao, L., Hu, S., Wang, X., Xu, Z. and Wu, Q., "Effect of Precursor and Synthesis Temperature on the Structural and Electrochemical Properties of $Li(Ni_{0.5}Co_{0.2}Mn_{0.3})O_{2}$," Electrochim. Acta, 75(4), 393-398(2012). https://doi.org/10.1016/j.electacta.2012.05.035
  18. Ju, J. H. and Rye, K. S., "Synthesis and Electrochemical Performance of $Li(Ni_{0.8}Co_{0.15}Al_{0.05})_{0.8}(Ni_{0.5}Mn_{0.5})_{0.2}O_{2}$ with Core-shell Structure as Cathode Material for Li-ion Batteries," J. Alloys Compd., 509(30), 7985-7992(2011). https://doi.org/10.1016/j.jallcom.2011.05.060
  19. Park, T. J., Lim, J. B. and Son, J. T., "Effect of Calcination Temperature of Size Controlled Microstructure of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ Cathode for Rechargeable Lithium Battery," Bull. Korean Chem. Soc., 35(2), 357-364(2014). https://doi.org/10.5012/bkcs.2014.35.2.357
  20. Liu, W., Hu, G., Du, K., Peng, Z. and Cao, Y., "Surface Coating of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_{2}$ with $LiCoO_{2}$ by a Molten Salt Method,"Surf. Coat. Technol., 216, 267-272(2013). https://doi.org/10.1016/j.surfcoat.2012.11.057