DOI QR코드

DOI QR Code

Thermal Characteristics of Daegu using Land Cover Data and Satellite-derived Surface Temperature Downscaled Based on Machine Learning

기계학습 기반 상세화를 통한 위성 지표면온도와 환경부 토지피복도를 이용한 열환경 분석: 대구광역시를 중심으로

  • Yoo, Cheolhee (Department of Urban and Environment Engineering, Ulsan National Institute of Science and Technology) ;
  • Im, Jungho (Department of Urban and Environment Engineering, Ulsan National Institute of Science and Technology) ;
  • Park, Seonyoung (Department of Urban and Environment Engineering, Ulsan National Institute of Science and Technology) ;
  • Cho, Dongjin (Department of Urban and Environment Engineering, Ulsan National Institute of Science and Technology)
  • 유철희 (울산과학기술원 도시환경공학부) ;
  • 임정호 (울산과학기술원 도시환경공학부) ;
  • 박선영 (울산과학기술원 도시환경공학부) ;
  • 조동진 (울산과학기술원 도시환경공학부)
  • Received : 2017.11.14
  • Accepted : 2017.12.13
  • Published : 2017.12.31

Abstract

Temperatures in urban areas are steadily rising due to rapid urbanization and on-going climate change. Since the spatial distribution of heat in a city varies by region, it is crucial to investigate detailed thermal characteristics of urban areas. Recently, many studies have been conducted to identify thermal characteristics of urban areas using satellite data. However,satellite data are not sufficient for precise analysis due to the trade-off of temporal and spatial resolutions.In this study, in order to examine the thermal characteristics of Daegu Metropolitan City during the summers between 2012 and 2016, Moderate Resolution Imaging Spectroradiometer (MODIS) daytime and nighttime land surface temperature (LST) data at 1 km spatial resolution were downscaled to a spatial resolution of 250 m using a machine learning method called random forest. Compared to the original 1 km LST, the downscaled 250 m LST showed a higher correlation between the proportion of impervious areas and mean land surface temperatures in Daegu by the administrative neighborhood unit. Hot spot analysis was then conducted using downscaled daytime and nighttime 250 m LST. The clustered hot spot areas for daytime and nighttime were compared and examined based on the land cover data provided by the Ministry of Environment. The high-value hot spots were relatively more clustered in industrial and commercial areas during the daytime and in residential areas at night. The thermal characterization of urban areas using the method proposed in this study is expected to contribute to the establishment of city and national security policies.

급격한 도시화와 이상기후의 증가로 도시의 기온이 꾸준히 올라가고 있으며, 한 도시 안에서도 열분포 양상이 지역마다 다르게 나타나고 있어 상세한 도시 열환경 분석이 요구된다. 최근에는 위성자료를 이용한 열환경 분석이 수행되고 있으나, 위성자료는 시 공간해상도의 Trade-off 관계로 인해 정밀한 분석에 어려움이 따른다. 이 연구는 2012년부터 2016년의 대구광역시 여름철 열환경 분석을 위해, MODIS(Moderate Resolution Imaging Spectroradiometer) 1 km 공간해상도의 낮과 밤 지표면온도(낮$LST_{1km}$, 밤$LST_{1km}$)를 250 m 공간해상도(낮$LST_{250m}$, 밤$LST_{250m}$)로 상세화 시켰다. 상세화에는 기계학습 기법인 랜덤 포레스트(Random Forest)가 이용되었다. 향상된 $LST_{250m}$는 기존의 $LST_{1km}$에 비해, 대구광역시 행정동 기준 불투수면적 비율과 지표면온도가 높은 상관관계를 보여주었다. 다음으로, 상세화 된 낮과 밤$LST_{250m}$를 이용하여 Hot Spot 분석을 수행하였다. 대구광역시 행정동 중 낮과 밤 지표면온도가 Hot Spot으로 군집화된 영역을 비교하고, 토지피복도를 이용하여 그 원인을 분석했다. 낮에는 공업 및 상업지역의 비율이 높은 영역에서, 밤의 경우 주거지역의 비율이 높은 영역에서 높은 Hot Spot이 군집 되었다. 본 연구의 열환경 분석 접근은 향후 도시정책 수립 및 국민안전에 큰 기여를 할 수 있을 것으로 기대된다.

Keywords

References

  1. Alexander, L., X. Zhang, T. Peterson, J. Caesar, B. Gleason, A. Klein Tank, M. Haylock, D. Collins, B. Trewin, and F. Rahimzadeh, 2006. Global observed changes in daily climate extremes of temperature and precipitation, Journal of Geophysical Research: Atmospheres, 111(D5).
  2. Alexandri, E. and P. Jones, 2008. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates, Building and Environment, 43(4): 480-493. https://doi.org/10.1016/j.buildenv.2006.10.055
  3. Ahn, J.S., H.D. Kim, and S.W. Kim, 2010. Effect of difference of land cover conditions on urban thermal environment in Daegu using satellite and AWS data, Journal of Environmental Science International, 19(3): 281-293. https://doi.org/10.5322/JES.2010.19.3.281
  4. Bechtel, B., K. Zakšek, and G. Hoshyaripour, 2012. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany, Remote Sensing, 4(10): 3184-3200. https://doi.org/10.3390/rs4103184
  5. Beers, T. W., P. E. Dress, and L. C. Wensel, 1966. Notes and observations: aspect transformation in site productivity research, Journal of Forestry, 64(10): 691-692.
  6. Breiman, L., 2001. Random forests, Machine learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
  7. Courault, D. and P. Monestie, 1999. Spatial interpolation of air temperature according to atmospheric circulation patterns in southeast France, International Journal of Climatology, 19(4): 365-378. https://doi.org/10.1002/(SICI)1097-0088(19990330)19:4<365::AID-JOC369>3.0.CO;2-E
  8. Environmental Geographic Information Service, 2017. Landcover map, https://egis.me.go.kr, Accessed on Aug. 4, 2017.
  9. Essa, W., B. Verbeiren, J. van der Kwast, T. Van de Voorde, and O. Batelaan, 2012. Evaluation of the DisTrad thermal sharpening methodology for urban areas, International Journal of Applied Earth Observation and Geoinformation, 19: 163-172. https://doi.org/10.1016/j.jag.2012.05.010
  10. Hutengs, C. and M. Vohland, 2016. Downscaling land surface temperatures at regional scales with random forest regression, Remote Sensing of Environment, 178: 127-141. https://doi.org/10.1016/j.rse.2016.03.006
  11. Inostroza, L., M. Palme, and F. de la Barrera, 2016. A heat vulnerability index: spatial patterns of exposure, sensitivity and adaptive capacity for Santiago de Chile, PloS one, 11(9): e0162464. https://doi.org/10.1371/journal.pone.0162464
  12. Keramitsoglou, I., C. T. Kiranoudis, and Q. Weng, 2013. Downscaling geostationary land surface temperature imagery for urban analysis, IEEE Geoscience and Remote Sensing Letters, 10(5): 1253-1257. https://doi.org/10.1109/LGRS.2013.2257668
  13. Kim, J.A., K.R. Kim, and B.J. Kim, 2015. The Occurrence Characteristic and Future Prospect of Extreme Heat and Tropical Night in Daegu and Jeju, Journal of Environmental Science International, 24(11): 1493-1500. https://doi.org/10.5322/JESI.2015.24.11.1493
  14. Kim, J.H. and J.H. Choi, 2014. Aanalysis the Structure of Heat Environment in Daegu Using Landsat-8. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 32(4_1): 327-333 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2014.32.4-1.327
  15. Kim, Y. and N.W. Park, 2016. Spatial Disaggregation of Coarse Scale Satellite-based Precipitation Data using Machine Learning Model and Residual Kriging, Journal of Climate Research, 11: 183-195. https://doi.org/10.14383/cri.2016.11.2.183
  16. Lee, K.G. and W.H. Hong, 2007. The study on the heat island and cool island according to trend toward higher temperature in urban: Case study oh Taegu metropolitian city, Journal of the Architectural Institute of Korea, 23: 219-228.
  17. Lemonsu, A., V. Viguié, M. Daniel, and V. Masson, 2015. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France), Urban Climate, 14: 586-605. https://doi.org/10.1016/j.uclim.2015.10.007
  18. Liaw, A. and M. Wiener, 2002. Classification and regression by randomForest, R news, 2(3): 18-22.
  19. Maimaitiyiming, M., A. Ghulam, T. Tiyip, F. Pla, P. Latorre-Carmona, U. Halik, M. Sawut, and M. Caetano, 2014. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation, ISPRS Journal of Photogrammetry and Remote Sensing, 89: 59-66. https://doi.org/10.1016/j.isprsjprs.2013.12.010
  20. Metzger, K. B., K. Ito, and T. D. Matte, 2010. Summer heat and mortality in New York City: how hot is too hot?, Environmental Health Perspectives, 118(1): 80. https://doi.org/10.1289/ehp.0900906
  21. Scaramuzza, P., E. Micijevic, and G. Chander, 2004. Landsat Technical Notes 5 : SLC gap-filled products phase one methodology, USGS, USA.
  22. Seifert, L. I., G. Weithoff, and M. Vos, 2015. Extreme heat changes post-heat wave community reassembly, Ecology and evolution, 5(11): 2140-2148. https://doi.org/10.1002/ece3.1490
  23. Weng, Q. and D. Lu, 2008. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States, International journal of applied earth observation and geoinformation, 10(1): 68-83. https://doi.org/10.1016/j.jag.2007.05.002
  24. XIAO, R.-b., Z.-y. OUYANG, H. ZHENG, W.-f. LI, E. W. Schienke, and X.-k. WANG, 2007. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China, Journal of Environmental Sciences, 19(2): 250-256. https://doi.org/10.1016/S1001-0742(07)60041-2
  25. Zhang, J. and F. Yao, 2009. The characteristics of urban heat island variation in Beijing urban area and its impact factors, Urban Remote Sensing Event, 2009 Joint, 1-6.