DOI QR코드

DOI QR Code

Sensitivity analysis of pump and tank sizes on water network operation and water age

송수펌프용량 및 배수지규모에 따른 송·배수시스템의 운영비용 및 체류시간 분석

  • Kim, Kangmin (Department of Civil Engineering, Kyung Hee University) ;
  • Choi, Jeongwook (Department of Civil Engineering, Kyung Hee University) ;
  • Jung, Donghwi (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Kang, Doosun (Department of Civil Engineering, Kyung Hee University)
  • 김강민 (경희대학교 사회기반시스템공학과) ;
  • 최정욱 (경희대학교 사회기반시스템공학과) ;
  • 정동휘 (고려대학교 방재과학기술연구소) ;
  • 강두선 (경희대학교 사회기반시스템공학과)
  • Received : 2017.08.11
  • Accepted : 2017.10.13
  • Published : 2017.12.31

Abstract

Recently, various studies have been conducted to optimize the pump operation scheduling and/or the pump/tank size minimizing the system cost of water distribution network. Prior to that, it is important to understand the sensitivity of pump/tank size on the system cost and overall water quality. Here, we have performed the sensitivity analysis to investigate the effect of pump/tank size on the economic cost (construction and operation) and water quality (water age). The analysis was applied on a real, large-scale water transmission network currently operating in South Korea. The results revealed that the pump/tank size has a strong influence on system construction/operation costs. Especially, the tank size has a significant effect on the system-wide water quality. In the case of applied networks, the operating cost decreases as the capacity of the facility increases, but the design cost increases. Using a sensitivity analysis, a suitable range of pump/tank size could be suggested to minimize costs and stabilize the water quality at the same time prior to a system design.

최근 송 배수시스템의 최적 펌프운영과 펌프 및 배수지의 적정용량 산정을 위한 다양한 연구가 진행되고 있다. 시설물의 적정 용량을 선정하기에 앞서 송수펌프 용량 및 배수지규모에 따른 시스템 비용(건설 및 운영비용) 과 시스템 내 수질 변화를 분석하는 과정이 필요하다. 본 연구에서는 민감도 분석을 통해 송수펌프 용량과 배수지의 크기가 실제 시스템의 건설 및 운영비용, 그리고 시스템 전반의 수질에 미치는 영향을 분석하였다. 국내 대규모 지방상수도 시스템을 대상으로 분석을 실시하여 시설물 규모가 비용 및 수질에 미치는 영향을 명확히 파악하였다. 적용 네트워크의 경우, 시설물의 용량이 증가할수록 운영비용은 감소하지만, 설계비용은 증가하는 것으로 나타났으며, 이를 통해 비용최소화와 수질안정화를 동시에 만족하는 시설물의 적정용량 범위를 파악할 수 있을 것으로 판단된다.

Keywords

References

  1. AbdelMeguid, H., and Ulanicki, B. (2010). Feedback rules for operation of pumps in a water supply system considering electricity tariffs. In Water Distribution Systems Analysis 2010, pp. 1188-1205.
  2. Alperovits, E., and Shamir, U. (1977). "Design of optimal water distribution systems." Water Resources Research, Vol. 13, No. 6, pp. 885-900. https://doi.org/10.1029/WR013i006p00885
  3. Babayan, A., Kapelan, Z., Savic, D., and Walters, G. (2005). "Leastcost design of water distribution networks under demand uncertainty." Journal of Water Resources Planning and Management, Vol. 131, No. 5, pp. 375-382. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:5(375)
  4. Batchabani, E., and Fuamba, M. (2012). "Optimal tank design in water distribution networks: review of literature and perspectives." Journal of Water Resources Planning and Management, Vol. 140, No. 2, pp. 136-145. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000256
  5. Boulos, P. F., Wu, Z., Orr, C. H., Moore, M., Hsiung, P., and Thomas, D. (2001). Optimal pump operation of water distribution systems using genetic algorithms. In Distribution System Symposium.
  6. Eggener, C. L., and Polkowski, L. B. (1976). "Network models and the impact of modeling assumptions." Journal-American Water Works Association, Vol. 68, No. 4, pp. 189-196. https://doi.org/10.1002/j.1551-8833.1976.tb02385.x
  7. Farmani, R., Savic, D. A., and Walters, G. A. (2004). The simultaneous multi-objective optimization of anytown pipe rehabilitation, tank sizing, tank siting, and pump operation schedules. In Critical Transitions in Water and Environmental Resources Management, pp. 1-10.
  8. Farmani, R., Walters, G. A., and Savic, D. A. (2005). "Trade-off between total cost and reliability for Anytown water distribution network." Journal of Water Resources Planning and Management, Vol. 131, No. 3, pp. 161-171. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:3(161)
  9. Giacomello, C., Kapelan, Z., and Nicolini, M. (2012). "Fast hybrid optimization method for effective pump scheduling." Journal of Water Resources Planning and Management, Vol. 139, No. 2, pp. 175-183. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000239
  10. Jung, D., Kang, D., Kang, M., and Kim, B. (2015). "Real-time pump scheduling for water transmission systems: case study." Journal of Civil Engineering, KSCE, Vol. 19, No. 7, pp. 1987-1993.
  11. Korea Electric Power COrporation (KEPCO) (2012). Electric power statistics information system.
  12. Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, H. Y., and Tan, C. L. (2003). "Ant colony optimization for design of water distribution systems." Journal of Water Resources Planning and Management, Vol. 129, No. 3, pp. 200-209. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(200)
  13. Ministry of Environment (2010). Drinking water facility operation regulations, Korea water and wastewater works association.
  14. Murphy, L. J., Dandy, G. C., and Simpson, A. R. (1994). "Optimum design and operation of pumped water distribution-systems." 1994 International Conference on Hydraulics in Civil Engineering: 'Hydraulics Working with the Environment', Preprints of Papers 94, The Institution of Engineers, Australia, 149-155.
  15. Ostfeld, A. (2005). "Optimal design and operation of multiquality networks under unsteady conditions." Journal of Water Resources Planning and Management, Vol. 131, No. 2, pp. 116-124. https://doi.org/10.1061/(ASCE)0733-9496(2005)131:2(116)
  16. Ostfeld, A., and Tubaltzev, A. (2008). "Ant colony optimization for least-cost design and operation of pumping water distribution systems." Journal of Water Resources Planning and Management, Vol. 134, No. 2, pp. 107-118. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(107)
  17. Pasha, M. F. K., and Lansey, K. (2010). Strategies for real time pump operation for water distribution systems. In Water Distribution Systems Analysis 2010, pp. 1456-1469.
  18. Prasad, T. D. (2007). Design of Anytown network with improved tank sizing methodology. Combined International Conference of Computing and Control for the Water Industry CCWI2007 and Sustainable Urban Water Management SUWM2007, September 3, 2007-September 5, 2007, Taylor and Francis/Balkema, Leiden, Netherlands.
  19. Rossman, L. A. (2000). EPANET2: User's manual.
  20. Schwartz, R., Housh, M., and Ostfeld, A. (2016). "Least-cost robust design optimization of water distribution systems under multiple loading." Journal of Water Resources Planning and Management, Vol. 142, No. 9, pp. 04016031. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000670
  21. Vamvakeridou-Lyroudia, L. S., Savic, D. A., and Walters, G. A. (2007). "Tank simulation for the optimization of water distribution networks." Journal of Hydraulic Engineering, Vol. 133, No. 6, pp. 625-636. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(625)
  22. Walters, G. A., Halhal, D., Savic, D., and Ouazar, D. (1999). "Improved design of "Anytown" distribution network using structured messy genetic algorithms." Urban Water, Vol. 1, No. 1, pp. 23-38. https://doi.org/10.1016/S1462-0758(99)00005-9