DOI QR코드

DOI QR Code

Solid-State Synthesis of Yttirum Oxyfluoride Powders and Their Application to Suspension Plasma Spray Coating

Yttirum Oxyfluoride 원료의 고상합성 및 서스펜션 플라즈마 스프레이 코팅 응용

  • Park, Sang-Jun (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyungsun (School of Materials Engineering, Inha University) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 박상준 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형순 (인하대학교 신소재공학과) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2017.11.16
  • Accepted : 2017.11.30
  • Published : 2017.12.27

Abstract

We synthesized YOF(yttirum oxyfluoride) powders through solid state reactions using $Y_2O_3$ and $YF_3$ as raw materials. The synthesis of crystalline YOF was started at $300^{\circ}C$ and completed at $500^{\circ}C$. The atmosphere during synthesis had a negligible effect on the synthesis of the YOF powder under the investigated temperature range. The particle size distribution of the YOF was nearly identical to that of the mixed $Y_2O_3$ and $YF_3$ powders. When the synthesized YOF powders were used as a raw material for the suspension plasma spray(SPS) coating, the crystalline phases of the coated layer consisted of YOF and $Y_2O_3$, indicating that oxidation or evaporation of YOF powders occurred during the coating process. Based on thermogravimetric analysis, the crystalline formation appeared to be affected by the evaporation of fluoride because of the high vapor pressure of the YOF material.

Keywords

References

  1. M. Schaepkens, R. C. M. Bosch, T. E. F. M. Standaert, G. S. Oehrlein and J. M, J. Cook, Vac Sci. Technol. A, Films, 16, 2099 (1998).
  2. Y. Kobayashi, Proc. 37th Seminar on High-Temperature Ceramics. July, p. 1-7 (2005).
  3. N. Ito, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu and Y. Kitayama, Jpn J. Appl. Phys., 47, 3630 (2008). https://doi.org/10.1143/JJAP.47.3630
  4. G. S. May and C. J. Spanos, Fundamentals of semiconductor manufacturing and process control., John Wiley & Sons, U.S.A, (2006).
  5. A. J. van Roosmalen, J. A. G. Baggerman and S. J. H. Brader, Dry Etching for VLSI., Springer Science & Business Media, Germany (2013).
  6. D. M. Kim, Y. S. Oh, S. Kim, H. T. Kim, D. S. Lim and S. M. Lee, Thin Solid Films., 519, 6698 (2011). https://doi.org/10.1016/j.tsf.2011.04.049
  7. J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara and K. Uematsu, J Am. Ceram. Soc., 90, 2327 (2007). https://doi.org/10.1111/j.1551-2916.2007.01738.x
  8. S. J. Kim, J. K. Lee, Y. S. Oh, S. Kim and S. M. Lee, J. Korean Ceram. Soc., 52, 395 (2015). https://doi.org/10.4191/kcers.2015.52.6.395
  9. P. Fauchais and G. Montavon, J. Therm. Spray Tech., 19, 226 (2010). https://doi.org/10.1007/s11666-009-9446-7
  10. C. Delbos, J. Fazilleau, V. Rat, J. F. Coudert, P. Fauchais and B. Pateyron, Plasma Chem. Plasma P, 26, 393 (2006). https://doi.org/10.1007/s11090-006-9020-8
  11. D. M. Kim, M. R. Jang, Y. S. Oh, S. Kim, S. M. Lee and S. H. Lee, Surf Coat Technol., 309, 694 (2017). https://doi.org/10.1016/j.surfcoat.2016.11.007
  12. J. K. Lee, S. J. Park, Y. S. Oh, S. Kim, H. Kim and S. M. Lee, Surf. Coat Technol., 309, 456 (2017). https://doi.org/10.1016/j.surfcoat.2016.11.021