DOI QR코드

DOI QR Code

Marinelli Beaker Measurement and Self Absorption Correction and Application for Various Environmental Samples in Monte Carlo Simulation

몬테카를로 시뮬레이션에서의 다양한 환경 샘플에 대한 Marinelli 비이커 측정 및 자기 흡수 보정과 적용

  • Jang, Eun-Sung (Dept. of Nuclear physics and Radiation Technology Research Center, Pusan National University) ;
  • Gim, Yang-Soo (Dept. of Radiation Oncology, Chonbuk National University Hospital) ;
  • Lee, Sun-Young (Department of Radiation Oncology, Institute for Medical Sciences, Chonbuk National University Medical School)
  • 장은성 (부산대학교 핵과학연구소) ;
  • 김양수 (전북대학교병원 방사선종양학과) ;
  • 이선영 (전북대학교 의과대학 방사선종양학과)
  • Received : 2017.11.03
  • Accepted : 2017.12.26
  • Published : 2017.12.31

Abstract

The structure of the actual detector was computed using the code of the PENELOPE. Using the standard mixed sources (450, 1,000 ml), compare the effectiveness of each energy according to various densities and height of the PENELOPE computer simulation, and calculate the effectiveness of the various environmental specimens and apply them to various environmental specimens to determine the lower limit. The values obtained by the obtained value were obtained by applying the obtained efficiency to the actual environmental specimens and obtaining the lower limit values. The density correction factor is 1.155 g of the density correction factor of $0.4g/cm^3$ (59.54keV), 1.153 (661 keV), $1.06g/cm^3$ 1.064 (1,836.04keV), 1.03, and 1.033. It was confirmed that the radioactivity concentration of environmental samples decreased as the amount of specimen was measured increases, and the MDA value decreased as time measured increases.

검출기의 구조를 PENELOPE의 코드를 사용하여 전산모사 하였다. 표준혼합시료(450, 1,000 ml)를 사용하여 다양한 밀도와 높이에 따른 저에너지(59.54 keV)부터 고 에너지(1,836.05)에 대한 측정효율과 PENELOPE 전산모사에서 구한 효율을 비교하였으며, 또한 자체흡수에 대한 효율을 보정하여 다양한 환경시료에 적용하여 검출하한치를 알아보고자 한다. 표준혼합선원의 전체에너지 피크효율 값을 적용하여 높이에 따른 효율변화를 측정치와 PENELOPE의 전산모사 값과 비교하였다. 여기서 구한 값들을 자체흡수 보정하여 구한 효율을 실제 환경시료에 적용하여 검출하한치 값들을 구하였다. 밀도보정인자는 밀도가 $0.4g/cm^3$에서 241Am(59.54 keV)의 밀도보정인자는 1.15, PENELOPE 전산모사에서는 1.153, 137CS(661.66 keV) 에서는 $1.06g/cm^3$, PENELOPE 전산모사에서는 1.064, 88Y(1,836.04 keV)에 대한 밀도보정인자는 1.03, PENELOPE 전산모사에서는 1.033으로 불확도는 1% 이내에서 잘 일치함을 확인하였다. 환경 시료의 밀도에 따른 방사능 농도는 시료량이 많을수록, 측정시간이 증가할수록 MDA(Minimum Detectable Activity) 값이 감소함을 확인할 수 있었다.

Keywords

References

  1. Kitto. M. E. Determination of photon self-absorption correction for soil samples. Apply. Radiation Isotope, 1991;42(9):835-839. https://doi.org/10.1016/0883-2889(91)90221-L
  2. Hasan. M. A simplified technique to determine the self-absorption correction for dediment samples. Apply. Radiation Isotope. 2002;57:915-918 https://doi.org/10.1016/S0969-8043(02)00169-0
  3. Dryak. P. Corrections for the Marinelli geometry. Radiation Nuclear Chemistry, 1989;135(4):281-292. https://doi.org/10.1007/BF02164586
  4. Sanchez .F, Navarro. E, J. Ferrero. L, Moreno. A, Roldan. C, Baeza. A and Paniagua. J. A Monte Carlo based method of including gamma self-absorption for the analysis of environmental samples. Nuclear Instruments and Methods, 1991;B61:535-540.
  5. Debertin K and Jianping. R. Measurement of the activity of radioactive samples in Marinelli beakers. Nuclear Instruments and Methods, 1989;A278:541-549.
  6. Bar'o Juie. J. Sempau, Ja .Mack. Fern'andez-Varea and F. Salvat. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nuclear. Instrument. Methods. 1995;B 100:31-46.
  7. Jang. Eun. Sung, Chang. Bo. Seok. A Germanium Detector Structure PENELOPE Characteristic Analysis by Computer Simulation, Jour of Korea Society of Radiology, 2015;2:73-77.
  8. Wainio. K. M and Knoll. G. F. Calculated gamma ray response characteristics of semiconductor detectors. Nuclear Instruments and Methods. 1966;44:213-223. https://doi.org/10.1016/0029-554X(66)90153-4
  9. B. Lal and K. V. K. lyengar. Monte Carlo calculations of gamma ray response characteristics of cylindrical Ge(li) detectors. Nuclear Instruments and Methods, 1970;79:19-28. https://doi.org/10.1016/0029-554X(70)90004-2
  10. Gaggero. G. Monte Carlo calculations for the photo fractions and energy loss spectra of Ge(li) semiconductor detectors. Nuclear Instruments and Methods, 1971;94:481-492. https://doi.org/10.1016/0029-554X(71)90010-3
  11. Meixner. Ch. A Monte Carlo program for the calculation of gamma-ray spectra for germanium detectors. Nuclear Instruments and Methods, 1974;119:521-526. https://doi.org/10.1016/0029-554X(74)90802-7
  12. Nakamura. T. Monte Carlo calculation of reak efficiencies and response functions of coaxial-type Ge(li) detectors for disk gamma-ray sources. Nuclear Instruments and Methods, 1975;131: 521-527. https://doi.org/10.1016/0029-554X(75)90444-9
  13. Moss. C. E. Moss and Street man. J. R. Comparison of calculated and measured response functions for germanium detectors. Nuclear Instruments and Methods, 1990;A299:98-101
  14. Abbas. M.I. HPGe detector photo-peak efficiency calculation including self-absorption and coincidence corrections for Marinelli beaker sources using compact analytical expressions. Applied Radiation Isotope, 2001;54:761-768. https://doi.org/10.1016/S0969-8043(00)00308-0
  15. Saegusa. Jun, Katsuya Kawasaki, Akira Mihara, Mitsuo Ito, Makoto Yoshida. Determination of detection efficiency curves of HPGe detectors on radioactivity measurement of volume samples. Applied Radiation and Isotopes, 2004;61:1383. https://doi.org/10.1016/j.apradiso.2004.04.004
  16. Debertin K. and Grosswendt B. Efficiency calibration of semiconductor detectors by primary standard sources and Monte Carlo calculations. Nuclear Instruments and Methods in Physics Research, 1982;203:343-353 https://doi.org/10.1016/0167-5087(82)90646-9
  17. Nakamura T, uzuki T. Monte Carlo calculation of peak efficiencies of Ge(Li) and pure Ge detectors to voluminal sources and comparison with environmental radioactivity measurement. Nuclear Instruments and Methods in Physics Research, 1983;205:211-218 https://doi.org/10.1016/0167-5087(83)90191-6
  18. Birattari C, Salomone A. Please edit your search query to find results. Nuclear Instruments and Methods in Physics Research, 1900;174:391