DOI QR코드

DOI QR Code

Design of a Transformable Spherical Robot Based on Multi-Linkage Structure

복합 링크 구조 기반의 가변형 구형로봇 설계

  • Kang, Hyeongseok (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Joe, Seonggun (School. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Lee, Dongkyu (School. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.) ;
  • Kim, Byungkyu (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace Univ.)
  • 강형석 (한국항공대학교 항공우주 및 기계공학부) ;
  • 조성건 (한국항공대학교 항공우주 및 기계공학과) ;
  • 이동규 (한국항공대학교 항공우주 및 기계공학과) ;
  • 김병규 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2017.10.19
  • Accepted : 2017.11.20
  • Published : 2017.12.31

Abstract

We propose a variable frame structure connected with telescopic mast-shaped shaft for a robot displaying outstanding ability to cross obstacles, and for effective traction control. The wireless control system was built to extend and contract a deployable mechanism, which is shaped into a hoberman sphere assembled with frame structures. In order to develop important parameters for efficient locomotion, we derived an Euler-Lagrange equation for the spherical robot. According to the equation, the DC motor was selected. A prototype mechanism was tested and a Finite-Element Analysis (FEA) was conducted in parallel. Using these data, we constructed a deployable spherical robot with structural stability. The deployable robot moved at a speed of 0.85 m/s from 520 mm to 650 mm.

본 연구에서는 외골격 크기를 변화하여 효과적으로 구동력을 조절하고 우수한 장애물 통과능력을 가진 구형로봇을 구현하였다. 호버만구를 외골격으로 채택하고 슬라이더-크랭크 구조의 확대 수축 메커니즘을 설계하여 무선으로 로봇의 크기변화와 이동제어가 가능하도록 제어시스템을 구축하였다. 로봇의 효율적인 구동에 필요한 주요 변수를 확인하기 위하여 오일러-라그랑주 운동방정식을 세워 해석하였고, 이를 바탕으로 DC 모터를 선정하였다. 로봇의 성능을 평가하기 위해 Prototype 의 기초 구동실험을 진행함과 동시에 유한요소 해석을 통해 구조적 안정성을 보완한 최종 모델을 제작하였다. 결과적으로, 외경 기준 최대 650 mm 에서 최소 520 mm 까지 수축/팽창이 가능한 로봇이 0.85 m/s로 주행이 가능한 것을 확인하였다.

Keywords

References

  1. Y. S. Kim, H. Kim, G. P. Jung, S. H. Kim, K. J. Cho, & C. N. Chu, "A new wheel design for miniaturized terrain adaptive robot." Journal of the Korean Society for Precision Engineering, vol. 30, pp. 32-38, 2013. https://doi.org/10.7736/KSPE.2013.30.1.32
  2. J. Y. Lee, B. B. Kang, D. Y. Lee, S. M. Baek, W. B. Kim, W. Y. Choi, & K. J. Cho, "Development of a multi-functional soft robot (SNUMAX) and performance in RoboSoft Grand Challenge." Frontiers in Robotics and AI, vol. 3, pp. 63, 2016.
  3. D. Y. Lee, J. S. Kim, S. R. Kim, J. S. Koh, & K. J. Cho, "The deformable wheel robot using magic-ball origami structure." ASME Paper No. DETC2013-13016, 2013.
  4. Y. Zhai, M. Li, J. Luo, Y. Zhou, & L. Liu, 1490. "Research of the motion balance of spherical mobile robot based on fuzzy control." Journal of Vibroengineering, vol. 17, 2015.
  5. D. Pokhrel, N. R. Luitel, S. Das, & D. N. Ray, "Design and development of a spherical robot (SpheRobot)." In Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India pp. 735-741, 2013.
  6. A. Halme, J. Suomela, T. Schonberg, & Y. Wang, "A spherical mobile micro-robot for scientific applications." ASTRA, pp. 96, 1996.
  7. K. Othman, "Dynamics control of pendulums driven spherical robot." In Applied Mechanics and Materials Trans Tech Publications. vol. 315, pp. 192-195, 2013. https://doi.org/10.4028/www.scientific.net/AMM.315.192
  8. H. S. Kang, S. G. Joe, D. K. Lee, & B. K. Kim, "Spherical robot for space exploration." The Society for Aerospace System Engineering 2017 Fall Conf. Satellite System, pp. 452-453, 2017
  9. J. Cai, Y. Xu, & J. Feng, "Kinematic analysis of Hoberman's Linkages with the screw theory." Mechanism and Machine Theory, vol. 63, pp. 28-34, 2013. https://doi.org/10.1016/j.mechmachtheory.2013.01.004
  10. B. Slack, U.S. Patent No. 8,826,840. Washington, DC: U.S. Patent and Trademark Office.
  11. Charles E. Wilson & J. Peter Sadler., 2003, Kinematics and Dynamics of Machinery, Prentice Hall, New Jersey, pp. 44-46, 125-127, 2014
  12. T. M. Atanackovic, S. Konjik, & S. Pilipovic, "Variational problems with fractional derivatives: Euler-Lagrange equations." Journal of Physics A: Mathematical and Theoretical, vol. 41, 095201, 2008 https://doi.org/10.1088/1751-8113/41/9/095201
  13. K. Landa, & A. K. Pilat, "Design and start-up of spherical robot with internal pendulum." In Robot Motion and Control (RoMoCo), 2015 10th International Workshop on pp. 27-32, July 2015, IEEE.
  14. M. A. Plaisier, & J. B. Smeets, "Object size can influence perceived weight independent of visual estimates of the volume of material." Scientific reports, pp. 5, 2015
  15. M. Sayuti, A. A. Sarhan, T. Tanaka, M. Hamdi, & Y. Saito, "Cutting force reduction and surface quality improvement in machining of aerospace duralumin AL-2017-T4 using carbon onion nanolubrication system." The International Journal of Advanced Manufacturing Technology, pp. 1-8, 2013.
  16. L. Vikingsson, C. M. Antolinos-Turpin, J. A. Gomez-Tejedor, G. G. Ferrer, & J. G. Ribelles, "Prediction of the "in vivo" mechanical behavior of biointegrable acrylic macroporous scaffolds." Materials Science and Engineering: C, vol. 61, pp. 651-658, 2016. https://doi.org/10.1016/j.msec.2015.12.068
  17. L. E. Bertassoni, G. W. Marshall, E. M. de Souza, & R. N. Rached, "Effect of pre-and postpolymerization on flexural strength and elastic modulus of impregnated, fiber-reinforced denture base acrylic resins." The Journal of prosthetic dentistry, vol. 100, pp. 449-457, 2008. https://doi.org/10.1016/S0022-3913(08)60263-2
  18. S. Shirkavand & E. Moslehifard, "Effect of TiO2 nanoparticles on tensile strength of dental acrylic resins." Journal of dental research, dental clinics, dental prospects, vol. 8, pp. 197, 2014