DOI QR코드

DOI QR Code

Mineral Carbonation of Serpentinite: Extraction, pH swing, and Carbonation

사문암(Serpentinite)을 이용한 광물탄산화: Mg 추출과 pH swing 및 탄산화

  • LEE, Seung-Woo (Center for carbon mineralization, Korea Institute of Geosciences and Mineral Resources) ;
  • Won, Hyein (Center for carbon mineralization, Korea Institute of Geosciences and Mineral Resources) ;
  • Choi, Byoung-Young (Center for CO2 geological storage, Korea Institute of Geosciences and Mineral Resources) ;
  • Chae, Soochun (Center for carbon mineralization, Korea Institute of Geosciences and Mineral Resources) ;
  • Bang, Jun-Hwan (Center for carbon mineralization, Korea Institute of Geosciences and Mineral Resources) ;
  • Park, Kwon Gyu (Center for CO2 geological storage, Korea Institute of Geosciences and Mineral Resources)
  • 이승우 (탄소광물화사업단 한국지질자원연구원) ;
  • 원혜인 (탄소광물화사업단 한국지질자원연구원) ;
  • 최병영 (지중저장연구단 한국지질자원연구원) ;
  • 채수천 (탄소광물화사업단 한국지질자원연구원) ;
  • 방준환 (탄소광물화사업단 한국지질자원연구원) ;
  • 박권규 (지중저장연구단 한국지질자원연구원)
  • Received : 2017.11.16
  • Accepted : 2017.12.28
  • Published : 2017.12.30

Abstract

Mineral carbonation by indirect method has been studied by serpentinite as cation source. Through the carbonation of $CO_2$ and alkaline earth ions (calcium and magnesium) from serpentinite, the pure carbonates including $MgCO_3$ and $CaCO_3$ were synthesized. The extraction solvent used to extract magnesium (Mg) was ammonium sulfate ($(NH_4)_2SO_4$), and the investigated experimental factors were the concentration of $(NH_4)_2SO_4$, reaction temperature, and ratio of serpentinite to the extraction solvent. From this study, the Mg extraction efficiency of approximately 80 wt% was obtained under the conditions of 2 M $(NH_4)_2SO_4$, $300^{\circ}C$, and a ratio of 5 g of serpentinite/75 mL of extraction solvent. The Mg extraction efficiency was proportional to the concentration and reaction temperature. $NH_3$ produced from the Mg extraction of serpentinite was used as a pH swing agent for carbonation to increase the pH value. About 1.78 M of $NH_3$ as the form of $NH_4{^+}$ was recovered after Mg extraction from serpentinite. And, the main step in Mg extraction process of serpentinite was estimated by geochemical modeling.

간접 탄산화(indirect method) 및 양이온 공급원으로 사문암(serpentinite)을 이용하여 광물탄산화 연구를 수행하였다. 이산화탄소와 사문암 내 알칼리 토금속(칼슘과 마그네슘)의 탄산화 반응을 통해 고순도의 탄산칼슘과 탄산마그네슘을 합성할 수 있었다. 마그네슘 추출을 위해 황산암모늄을 사용하였고 Mg 추출률 향상을 위해 황산암모늄 농도, 반응온도 및 사문암과 추출 용매의 비(고액비) 등 여러 반응 변수를 검토하였다. 본 연구로부터 2 M 황산암모늄을 사용하여 $300^{\circ}C$ 반응온도에서 고액비(5 g/66 mL) 실험을 진행한 경우 약 80 wt% 이상의 Mg를 얻을 수 있었다. Mg 추출률은 추출 용매 농도 및 반응온도와 비례하여 증가하였다. 사문암의 Mg 추출 과정에서 얻어진 암모니아($NH_3$)는 회수하여 탄산화 과정에서 필요한 pH 복원제(pH swing agent)로 활용하였다. 본 연구를 통해 약 1.78 M 암모니아를 회수할 수 있었고 지구화학 모델링을 통해 사문암의 Mg 추출 과정의 핵심 단계를 해석하고자 하였다.

Keywords

References

  1. Azdarpour, A., Asadullah, M., Mohammadian, E., Hamidi, H., Junin, R., and Karaei, M.A. (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chemical Engineering Journal, 279, 615-630. https://doi.org/10.1016/j.cej.2015.05.064
  2. Bailey, S.W. (1988) Polytypism of 1:1 layer silicates. In: Bailey S.W. (Eds.) Hydrous phyllosilicates (exclusive of mica) (1st ed.), Vol. 19, MSA Reviews in Mineralogy, 9-37.
  3. Bearat, H., Mckelvy, M.J., Chizmeshya, A.V.G., Sharma, R., and Carpenter, R.W. (2002) Magnesium hydroxide dihydroxylation/ carbonation reaction processes: Implication for carbon dioxide mineral sequestration. Journal of the American Ceramic Society, 4, 742-748.
  4. Blanc, P., Lassin, A., Piantone, P., Azaroual, M., Jacquemet, N., Fabbri, A., and Gaucher, E.C. (2012) THERMODDEM: A geochemical database focused on low temperature water/rock interactions and waste materials. Applied Geochemistry, 27, 2107-2116. https://doi.org/10.1016/j.apgeochem.2012.06.002
  5. Carneiro, J.F., Boavida, D., and Silva, R. (2011) First assessment of sources and sinks for carbon capture and geological storage in Portugal. International Journal of Greenhouse Gas Control, 5, 538-548. https://doi.org/10.1016/j.ijggc.2010.08.002
  6. Cartwright, J.H.E., Checa, A.G., Gale, J.D., Gebauer, D., and Sainz-Diaz, C.I. (2012) Calcium carbonate polymorphism and its role in biomineralization: how many amorphous calcium carbonates are there?. Angewandte Chemie International Edition, 51, 11960-11970. https://doi.org/10.1002/anie.201203125
  7. Critelli, T., Marini, L., Schott, J., Mavromatis, V., Apollaro, C., Rinder, T., De Rosa, R., and Oelkers, E.H. (2015) Dissolution rate of antigorite from a whole-rock experimental study of serpentinite dissolution from 2 < pH < 9 at $25^{\circ}C$: Implications for carbon mitigation via enhanced serpentinite weathering. Applied Geochemistry, 61, 259-271. https://doi.org/10.1016/j.apgeochem.2015.06.004
  8. Evans, B.W., Hattori, K., and Baronnet, A. (2013) Serpentinite: What, Why, Where?. Elements, 9, 99-106. https://doi.org/10.2113/gselements.9.2.99
  9. Lasaga, A.C. (1998) Kinetic theory in the earth science (1st ed.), Princeton University Press, New York, 152p.
  10. Lee, S., Kim, J., Chae, S., Bang, J.H., and Lee, S.W. (2016) $CO_2$ sequestration technology through mineral carbonation: An extraction and carbonation of blast slag. Journal of CO2 Utilization, 16, 336-345. https://doi.org/10.1016/j.jcou.2016.09.003
  11. Lee, S.W., Park, S.B., Jeong, S.W., Lim, K.S., Lee, S.H., and Trachtenberg, M.C. (2010) On carbon dioxide storage based on biomineralization strategies. Micron, 41, 273-282. https://doi.org/10.1016/j.micron.2009.11.012
  12. Lide, D.R. and Frederikse, H.P.R. (1998) CRC handbook of chemistry and physics (78th ed.), CRC Press, New York, 8p.
  13. Lin, P.C., Huang, C.W., Hsiao, C.T., and Teng, H. (2008) Magnesium hydroxide extracted from a magnesium-rich mineral for $CO_2$ sequestration in a gas-solid system. Environmental Science & Technology, 42, 2748-2752. https://doi.org/10.1021/es072099g
  14. Luo, J., Kong, F., and Ma, X. (2015) Role of aspartic acid on the synthesis of spherical vaterite by the Ca(OH)-CO reaction. Crystal Growth & Design, 16, 728-736.
  15. Mirjafari, P., Asghari, K., and Mahinpey, N. (2007) Investigation the application of enzyme carbonic anhydrase for $CO_2$ sequestration purposes. Industrial & Engineering Chemistry Research, 46, 921-926. https://doi.org/10.1021/ie060287u
  16. Oxtoby, D.W., Gillis, H.P., and Campion, A. (2012) Principle modern chemistry (7th ed.), Brooks Cole, London, 735p.
  17. Palandri, J.L. and Kharaka, Y.K. (2004) A compilation of rate parameter of water-mineral interaction kinetics for application to geochemical modeling (1st ed.) (U.S. Geological Survey Open File Report), 1-64p.
  18. Park, A.H.A. and Fan, L.S. (2004) $CO_2$ mineral sequestration: physically activated dissolution of serpentinite and pH swing process. Chemical Engineering Science, 59, 5241-5247. https://doi.org/10.1016/j.ces.2004.09.008
  19. Parkhurst, D.L. and Appelo, C.A.J. (2017) Description of input and examples for PHREEQC (ver. 3) -A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. geological survey techniques and methods, book 6, chap. A43, 497 p., available only at http://pubs,usgs.gov/tm/06/a43 (accessed on 25 April 2017).
  20. Rodriguez-Blanco, J.D., Shaw, S., and Benning, L.G. (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale, 3, 265-271. https://doi.org/10.1039/C0NR00589D
  21. Sanna, A., Dri, M., and Maroto-Valer, M.M. (2013) Carbon dioxide capture and storage with mineralization using recyclable ammonium salts. Energy, 51, 431-161. https://doi.org/10.1016/j.energy.2013.01.021
  22. Song, K., Jang, Y.N., Kim, W., Lee, M.G., Shin, D., Bang, J.W., Jeon, C.W., and Chae, S.C. (2014) Factors affecting the precipitation of pure calcium carbonate during the direct aqueous carbonation of flue gas desulfurization gypsum. Energy, 65, 527-532. https://doi.org/10.1016/j.energy.2013.11.008
  23. Wang, X. and Maroto-Valer, M.M. (2011) Dissolution of serpentinite using recyclable ammonium salts for $CO_2$ mineral carbonation. Fuel, 90, 1229-1237. https://doi.org/10.1016/j.fuel.2010.10.040
  24. Wang, X. and Maroto-Valer, M.M. (2011) Integration of $CO_2$ capture and mineral carbonation by using recyclable ammonium salts. ChemSusChem, 4, 1291-1300. https://doi.org/10.1002/cssc.201000441
  25. Wolterbeek, T.K.T., Peach, C.J., and Spiers, C.J. (2013) Reaction and transport in wellbore interfaces under $CO_2$ storage conditions: Experiments simulating debonded cement-casing interfaces. International Journal of Greenhouse Gas Control, 19, 519-529. https://doi.org/10.1016/j.ijggc.2013.10.017
  26. Zhang, M. and Bachu, S. (2011) Review of integrity of existing wells in relation to $CO_2$ geological storage: What do we know?. International Journal of Greenhouse Gas Control, 5, 826-840. https://doi.org/10.1016/j.ijggc.2010.11.006

Cited by

  1. 슬래그 내 양이온 추출 및 불순물 분리 연구 vol.25, pp.4, 2017, https://doi.org/10.7464/ksct.2019.25.4.309