DOI QR코드

DOI QR Code

Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch

콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성

  • Kim, Joon-Woo (Department of Nano Applied Engineering, Kangwon National University) ;
  • Jeong, Goo-Hwan (Department of Nano Applied Engineering, Kangwon National University)
  • 김준우 (강원대학교 공과대학 나노응용공학과) ;
  • 정구환 (강원대학교 공과대학 나노응용공학과)
  • Received : 2017.11.14
  • Accepted : 2017.12.13
  • Published : 2017.12.31

Abstract

We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

Keywords

References

  1. S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58. https://doi.org/10.1038/354056a0
  2. T. Guo, P. Nikolaev, A. Gthess, D. T. Colbert, and R. E. Smalley, Catalytic growth of singlewalled manotubes by laser vaporization, Chem. Phys. Lett. 243 (1995) 49-54. https://doi.org/10.1016/0009-2614(95)00825-O
  3. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Large-scale production of singlewalled carbon nanotubes by the electric-arc technique, Nature 388 (1997) 756-758. https://doi.org/10.1038/41972
  4. H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci. 500 (2002) 218-241. https://doi.org/10.1016/S0039-6028(01)01558-8
  5. J. Kong, H. Soh, A. Cassell, C. Quate, and H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers, Nature 395 (1998) 878-881. https://doi.org/10.1038/27632
  6. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283 (1999) 512-514. https://doi.org/10.1126/science.283.5401.512
  7. Z. Ren, Z. Huang, J. Wu, J. Wang, P. Bush, M. Siegel, and P. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282 (1998) 1105-1107. https://doi.org/10.1126/science.282.5391.1105
  8. J. Kong, A. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett. 292 (1998) 567-574. https://doi.org/10.1016/S0009-2614(98)00745-3
  9. V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapor deposition, Carbon 58 (2013) 2-39. https://doi.org/10.1016/j.carbon.2013.02.046
  10. S. Talapatra, S. Kar, S. Pal, R. Vajtai, L. Ci, P. Victor, M. Shaijumon, S. Kaur, O. Nanamasu, and P. Ajayan, Direct growth of aligned carbon nanotubes on bulk metals, Nature Nanotechnol. 1 (2006) 112-116. https://doi.org/10.1038/nnano.2006.56
  11. L. Gao, A. Peng, Z. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, and B. Ding, Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors, Solid State Commun. 146 (2008) 380-383. https://doi.org/10.1016/j.ssc.2008.03.034
  12. B. Kim, H. Chung, K. Chu, H. Yoon, C. Lee, and W. Kim, Synthesis of vertically-aligned carbon nanotubes on stainless steel by water-assisted chemical vapor deposition and characterization of their electrochemical properties, Synth. Metals 160 (2010) 584-587. https://doi.org/10.1016/j.synthmet.2009.12.008
  13. X. Liu, Y. Yang, W. Ji, H. Liu, C. Zhang, and B. Xu, Controllable growth of nanostructured carbon from coal tar pitch by chemical vapor deposition, Mater. Chem. and Phys. 104 (2007) 320-326. https://doi.org/10.1016/j.matchemphys.2007.03.020
  14. X. Liu, W. Ji, Y. Zhang, Y. Yang, and B. Xu, The morphology and electrical resistance of long oriented vapor-grown carbon fibers synthesized from coal pitch, Carbon 46 (2008) 154-158. https://doi.org/10.1016/j.carbon.2007.11.010
  15. Y. Yang, X. Liu, B. Xu, and T. Li, Preparation of vapor-grown carbon fibers from deoiled asphalt, Carbon 44 (2006) 1661-1664. https://doi.org/10.1016/j.carbon.2006.01.030
  16. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47-99. https://doi.org/10.1016/j.physrep.2004.10.006
  17. Z. Zhong, H. Chen, S. Tang, J. Ding, J. Lin, and K. Tan, Catalytic growth of carbon nanoballs with and without cobalt encapsulation, Chem. Phys. Lett. 330 (2000) 41-47. https://doi.org/10.1016/S0009-2614(00)01080-0
  18. Y. Zin, C. Cao, W. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C. Lee, S. Acquah, H. Kroto, and D. Walton, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons, Carbon 43 (2005) 1944-1953. https://doi.org/10.1016/j.carbon.2005.03.002