DOI QR코드

DOI QR Code

Effects of Extended Storage of Chlorhexidine Gluconate and Benzalkonium Chloride Solutions on the Viability of Burkholderia cenocepacia

  • Ahn, Youngbeom (Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration) ;
  • Kim, Jeong Myeong (Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration) ;
  • Lee, Yong-Jin (Department of Biological Sciences, Albany State University) ;
  • LiPuma, John J. (Department of Pediatrics & Communicable Diseases, University of Michigan) ;
  • Hussong, David (ValSource, LLC.) ;
  • Marasa, Bernard S. (Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration) ;
  • Cerniglia, Carl E. (Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration)
  • Received : 2017.06.14
  • Accepted : 2017.10.10
  • Published : 2017.12.28

Abstract

Chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) formulations are frequently used as antiseptics in healthcare and consumer products. Burkholderia cepacia complex (BCC) contamination of pharmaceutical products could be due to the use of contaminated water in the manufacturing process, over-diluted antiseptic solutions in the product, and the use of outdated products, which in turn reduces the antimicrobial activity of CHX and BZK. To establish a "afe use" period following opening containers of CHX and BZK, we measured the antimicrobial effects of CHX ($2-10{\mu}g/ml$) and BZK ($10-50{\mu}g/ml$) at sublethal concentrations on six strains of Burkholderia cenocepacia using chemical and microbiological assays. CHX (2, 4, and $10{\mu}g/ml$) and BZK (10, 20, and $50{\mu}g/ml$) stored for 42 days at $23^{\circ}C$ showed almost the same concentration and toxicity compared with freshly prepared CHX and BZK on B. cenocepacia strains. When $5{\mu}g/ml$ CHX and $20{\mu}g/ml$ BZK were spiked to six B. cenocepacia strains with different inoculum sizes ($10^0-10^5CFU/ml$), their toxic effects were not changed for 28 days. B. cenocepacia strains in diluted CHX and BZK were detectable at concentrations up to $10^2CFU/ml$ after incubation for 28 days at $23^{\circ}C$. Although abiotic and biotic changes in the toxicity of both antiseptics were not observed, our results indicate that B. cenocepacia strains could remain viable in CHX and BZK for 28 days, which in turn, indicates the importance of control measures to monitor BCC contamination in pharmaceutical products.

Keywords

References

  1. Gnanadhas DP, Marathe SA, Chakravortty D. 2013. Biocides - resistance, cross-resistance mechanisms and assessment. Expert Opin. Investig. Drugs 22: 191-206. https://doi.org/10.1517/13543784.2013.748035
  2. Gilbert P, Moore LE. 2005. Cationic antiseptics: diversity of action under a common epithet. J. Appl. Microbiol. 99: 703-715. https://doi.org/10.1111/j.1365-2672.2005.02664.x
  3. Weber DJ, Rutala WA, Sickbert-Bennett EE. 2007. Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob. Agents Chemother. 51: 4217-4224. https://doi.org/10.1128/AAC.00138-07
  4. D'Arcy PF, Taylor EP. 1962. Quaternary ammonium compounds in medicinal chemistry. I. J. Pharm. Pharmacol. 14: 129-146. https://doi.org/10.1111/j.2042-7158.1962.tb11069.x
  5. D'Arcy PF, Taylor EP. 1962. Quaternary ammonium compounds in medicinal chemistry. II. J. Pharm. Pharmacol. 14: 193-216. https://doi.org/10.1111/j.2042-7158.1962.tb11081.x
  6. Dabbah R, Chang WW, Cooper MS. 1996. The use of preservatives in compendial articles. Pharmacopeial Forum 22: 2696-2704.
  7. Brambilla E, Cagetti MG, Fadini L, Pariset P, Strohmenger L, Twetman S. 2004. Chlorhexidine concentration in saliva after topical treatment with an antibacterial dental varnish. Am. J. Dent. 17: 196-198.
  8. Russell AD. 2003. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 3: 794-803. https://doi.org/10.1016/S1473-3099(03)00833-8
  9. Tandukar M, Oh S, Tezel U, Konstantinidis KT, Pavlostathis SG. 2013. Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance. Environ. Sci. Technol. 47: 9730-9738. https://doi.org/10.1021/es401507k
  10. To MS, Favrin S, Romanova N, Griffiths MW. 2002. Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. Appl. Environ. Microbiol. 68: 5258-5264. https://doi.org/10.1128/AEM.68.11.5258-5264.2002
  11. Mahenthiralingam E, Urban TA, Goldberg JB. 2005. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 3: 144-156. https://doi.org/10.1038/nrmicro1085
  12. Govan JRW, Hughes JE, Vandamme P. 1996. Burkholderia cepacia: medical, taxonomic and ecological issues. J. Med. Microbiol. 45: 395-407. https://doi.org/10.1099/00222615-45-6-395
  13. Mahenthiralingam E, Vandamme P. 2005. Taxonomy and pathogenesis of the Burkholderia cepacia complex. Chron. Respir. Dis. 2: 209-217. https://doi.org/10.1191/1479972305cd053ra
  14. Dixon RE, Kaslow RA, Mackel DC, Fulkerson CC, Mallison GF. 1976. Aqueous quaternary ammonium antiseptics and disinfectants - use and misuse. J. Am. Med. Assoc. 236: 2415-2417. https://doi.org/10.1001/jama.1976.03270220035031
  15. FDA U. 2013. Enforcement report - week of March 20, 2013. Available from https://www.accessdata.fda.gov/scripts/ires/index.cfm. Accessed 9 May 2017.
  16. Fox JG, Beaucage CM, Folta CA, Thornton GW. 1981. Nosocomial transmission of Serratia marcescens in a veterinary hospital due to contamination by benzalkonium chloride. J. Clin. Microbiol. 14: 157-160.
  17. Guinness M, Levey J. 1976. Contamination of aqueous dilutions of resiguard disinfectant with Pseudomonas. Med. J. Aust. 2: 392-392.
  18. Kaslow RA, Macel DC, Mallison GF. 1976. Nosocomial pseudobacteremia. Positive blood cultures due to contaminated benzalkonium antiseptic. J. Am. Med. Assoc. 236: 2407-2409. https://doi.org/10.1001/jama.1976.03270220027028
  19. Lee JC, Fialkow PJ. 1961. Benzalkonium chloride - source of hospital infection with gram-negative bacteria. J. Am. Med. Assoc. 177: 708-710. https://doi.org/10.1001/jama.1961.73040360013012a
  20. Malizia WF, Gangarosa EJ, Goley AF. 1960. Benzalkonium chloride as a source of infection. N. Engl. J. Med. 263: 800-802. https://doi.org/10.1056/NEJM196010202631608
  21. Nakashima AK, Mccarthy MA, Martone WJ, Anderson RL. 1987. Epidemic septic arthritis caused by Serratia marcescens and associated with a benzalkonium chloride antiseptic. J. Clin. Microbiol. 25: 1014-1018.
  22. Nasser RM, Rahi AC, Haddad MF, Daoud Z, Irani-Hakime N, Almawi WY. 2004. Outbreak of Burkholderia cepacia bacteremia traced to contaminated hospital water used for dilution of an alcohol skin antiseptic. Infect. Control Hosp. Epidemiol. 25: 231-239. https://doi.org/10.1086/502384
  23. Plotkin SA, Austrian R. 1958. Bacteremia caused by Pseudomonas sp. following the use of materials stored in solutions of a cationic surface active agent. Am. J. Med. Sci. 235: 621-627. https://doi.org/10.1097/00000441-195806000-00001
  24. Sautter RL, Mattman LH, Legaspi RC. 1984. Serratia marcescens meningitis associated with a contaminated benzalkonium chloride solution. Infect. Control Hosp. Epidemiol. 5: 223-225.
  25. Sobel JD, Hashman N, Reinherz G, Merzbach D. 1982. Nosocomial Pseudomonas cepacia infection associated with chlorhexidine contamination. Am. J. Med. 73: 183-186. https://doi.org/10.1016/0002-9343(82)90176-0
  26. Tiwari TSP, Ray B, Jost KC, Rathod MK, Zhang YS, Brown-Elliott BA, et al. 2003. Forty years of disinfectant failure: outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin. Infect. Dis. 36: 954-962. https://doi.org/10.1086/368192
  27. CDC. 2017. Multistate outbreak of Burkholderia cepacia bloodstream infections associated with contaminated prefilled saline flush syringes. Available from https://www.cdc.gov/hai/outbreaks/b-cepacia-saline-flush/index.html. Accessed 9 May 2017.
  28. FDA. 2016. FDA updates on multistate outbreak of Burkholderia cepacia infections. Available from https://www.fda.gov/drugs/drugsafety/ucm511527.htm. Accessed 9 May 2017.
  29. LiPuma JJ, Spilker T, Gill LH, Campbell PW 3rd, Liu L, Mahenthiralingam E. 2001. Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am. J. Respir. Crit. Care Med. 164: 92-96. https://doi.org/10.1164/ajrccm.164.1.2011153
  30. Reik R, Spilker T, Lipuma JJ. 2005. Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J. Clin. Microbiol. 43: 2926-2928. https://doi.org/10.1128/JCM.43.6.2926-2928.2005
  31. Shehabi AA, Abu-al-Soud W, Mahafzah A, Khuri-Bulos N, Khader IA, Ouis IS, et al. 2004. Investigation of Burkholderia cepacia nosocomial outbreak with high fatality in patients suffering from diseases other than cystic fibrosis. Scand. J. Infect. Dis. 36: 174-178. https://doi.org/10.1080/00365540410027166
  32. Kim JM, Ahn Y, LiPuma JJ, Hussong D, Cerniglia CE. 2015. Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride. J. Ind. Microbiol. Biotechnol. 42: 905-913. https://doi.org/10.1007/s10295-015-1605-x
  33. Rose H, Baldwin A, Dowson CG, Mahenthiralingam E. 2009. Biocide susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother. 63: 502-510. https://doi.org/10.1093/jac/dkn540
  34. Vigeant P, Loo VG, Bertrand C, Dixon C, Hollis R, Pfaller MA, et al. 1998. An outbreak of Serratia marcescens infections related to contaminated chlorhexidine. Infect. Control Hosp. Epidemiol. 19: 791-794. https://doi.org/10.2307/30141429
  35. Ahn Y, Kim JM, Ahn H, Lee YJ, LiPuma JJ, Hussong D, et al. 2014. Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water. J. Ind. Microbiol. Biotechnol. 41: 1109-1118. https://doi.org/10.1007/s10295-014-1442-3
  36. Ahn Y, Kim JM, Kweon O, Kim SJ, Jones RC, Woodling K, et al. 2016. Intrinsic resistance of Burkholderia cepacia complex to benzalkonium chloride. MBio. 7: e01716-16.
  37. Hajaya MG, Pavlostathis SG. 2012. Fate and effect of benzalkonium chlorides in a continuous-flow biological nitrogen removal system treating poultry processing wastewater. Bioresour. Technol. 118: 73-81. https://doi.org/10.1016/j.biortech.2012.05.050
  38. Hazan R, Que Y-A, Maura D, Rahme LG. 2012. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 12: 259. https://doi.org/10.1186/1471-2180-12-259
  39. Cassidy MB, Leung KT, Lee H, Trevors JT. 2000. A comparison of enumeration methods for culturable Pseudomonas fluorescens cells marked with green fluorescent protein. J. Microbiol. Methods 40: 135-145. https://doi.org/10.1016/S0167-7012(99)00131-1
  40. FDA. 2015. Expiration dating and stability testing for human drug products. Available from https://www.fda.gov/ICECI/Inspections/InspectionGuides/InspectionTechnicalGuides/ucm072919.htm. Accessed 17 May 2017.
  41. Dolby J, Gunnarsson B, Kronberg L, Wikner H. 1972. Stability of chlorhexidine when autoclaving. Pharm. Acta Helv. 47: 615-620.
  42. Franck M, Schmidt PC. 1993. Degradation of chlorhexidine in antacid suspensions - a novel approach to describe degradation kinetics. Eur. J. Pharm. Biopharm. 39: 19-24.
  43. Zong Z, Kirsch LE. 2012. Studies on the instability of chlorhexidine, part I: kinetics and mechanisms. J. Pharm. Sci. 101: 2417-2427. https://doi.org/10.1002/jps.23151
  44. Das R, Sarkar S, Chakraborty S, Choi H, Bhattacharjee C. 2014. Remediation of antiseptic components in wastewater by photocatalysis using $TiO_2$ nanoparticles. Ind. Eng. Chem. Res. 53: 3012-3020. https://doi.org/10.1021/ie403817z
  45. Rucker RR, Johnson HE, Ordal EJ. 1949. An investigation of the bactericidal action and fish toxicity of two homologous series of quaternary ammonium compounds. J. Bacteriol. 57: 225-234.
  46. Jovovic M, Kostic N, Jancic-Stojanovic B, Malenovic A. 2012. Investigation of tropicamide and benzalkonium chloride stability using liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 35: 231-239. https://doi.org/10.1080/10826076.2011.597072
  47. Parhizkari G, Delker G, Miller RB, Chen C. 1995. A stability indicating HPLC method for the determination of benzalkonium chloride in 0.5 percent tramadol ophthalmic solution. Chromatographia 40: 155-158. https://doi.org/10.1007/BF02272164
  48. Parhizkari G, Miller RB, Chen C. 1995. A stability indicating HPLC method for the determination of benzalkonium chloride in phenylephrine HCl 10 percent ophthalmic solution. J. Liq. Chromatogr. 18: 553-563. https://doi.org/10.1080/10826079508009256
  49. Cheriaa J, Rouabhia M, Maatallah M, Bakhrouf A. 2012. Phenotypic stress response of Pseudomonas aeruginosa following culture in water microcosms. J. Water Health 10: 130-139. https://doi.org/10.2166/wh.2011.072
  50. Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 99: 17025-17030. https://doi.org/10.1073/pnas.252607699
  51. Ramos JL, Gallegos MT, Marques S, Ramos-Gonzalez MI, Espinosa-Urgel M, Segura A. 2001. Responses of gram-negative bacteria to certain environmental stressors. Curr. Opin. Microbiol. 4: 166-171. https://doi.org/10.1016/S1369-5274(00)00183-1
  52. Chen HY, Yuan M, Livermore DM. 1995. Mechanisms of resistance to beta-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J. Med. Microbiol. 43: 300-309. https://doi.org/10.1099/00222615-43-4-300
  53. Jung JY, Ahn Y, Kweon O, LiPuma JJ, Hussong D, Marasa BS, Cerniglia CE. 2017. Improved high-quality draft genome sequence and annotation of Burkholderia contaminans LMG $23361^T$. Genome Announc. 5: e00245-e00217.
  54. Ong HS, Mohamed R, Firdaus-Raih M. 2012. Comparative genome sequence analysis reveals the extent of diversity and conservation for glycan-associated proteins in Burkholderia spp. Comp. Funct. Genomics 2012: 752867.
  55. Guglierame P, Pasca MR, De Rossi E, Buroni S, Arrigo P, Manina G, et al. 2006. Efflux pump genes of the resistance nodulation division family in Burkholderia cenocepacia genome. BMC Microbiol. 6: 66. https://doi.org/10.1186/1471-2180-6-66
  56. Kido Y, Kodama H, Uraki F, Uyeda M, Tsuruoka M, Shibata M. 1988. Microbial degradation of disinfectants. II. Complete degradation of chlorhexidine. Eisei Kagaku 34: 97-101. https://doi.org/10.1248/jhs1956.34.97

Cited by

  1. Oligotrophic Media Compared with a Tryptic Soy Agar or Broth for the Recovery of Burkholderia cepacia Complex from Different Storage Temperatures and Culture Conditions vol.29, pp.10, 2017, https://doi.org/10.4014/jmb.1906.06024
  2. Adaptation and Survival of Burkholderia cepacia and B. contaminans During Long-Term Incubation in Saline Solutions Containing Benzalkonium Chloride vol.8, pp.None, 2017, https://doi.org/10.3389/fbioe.2020.00630
  3. Burkholderia cepacia Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products vol.33, pp.3, 2020, https://doi.org/10.1128/cmr.00139-19