DOI QR코드

DOI QR Code

Technology Trend of the additive Manufacturing (AM)

적층식 제조(Additive manufacturing) 기술동향

  • Oh, Ji-Won (Advanced Materials and Processing R&D Group, Korea Institute of Industrial Technology) ;
  • Na, Hyunwoong (Advanced Materials and Processing R&D Group, Korea Institute of Industrial Technology) ;
  • Choi, Hanshin (Advanced Materials and Processing R&D Group, Korea Institute of Industrial Technology)
  • 오지원 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재그룹) ;
  • 나현웅 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재그룹) ;
  • 최한신 (한국생산기술연구원 뿌리산업기술연구소 융합공정소재그룹)
  • Received : 2017.11.14
  • Accepted : 2017.11.27
  • Published : 2017.12.28

Abstract

A three-dimensional physical part can be fabricated from a three-dimensional digital model in a layer-wise manner via additive manufacturing (AM) technology, which is different from the conventional subtractive manufacturing technology. Numerous studies have been conducted to take advantage of the AM opportunities to penetrate bespoke custom product markets, functional engineering part markets, volatile low-volume markets, and spare part markets. Nevertheless, materials issues, machines issues, product issues, and qualification/certification issues still prevent the AM technology from being extensively adopted in industries. The present study briefly reviews the standard classification, technological structures, industrial applications, technological advances, and qualification/certification activities of the AM technology. The economics, productivity, quality, and reliability of the AM technology should be further improved to pass through the technology adoption lifecycle of innovation technology. The AM technology is continuously evolving through the introduction of PM materials, hybridization of AM and conventional manufacturing technologies, adoption of process diagnostics and control systems, and enhanced standardization of the whole lifecycle qualification and certification methodology.

Keywords

References

  1. https://multimedia-berichte.technik-und-wissen.ch/Das- Kleinstgedruckte/#Home
  2. J. I. Lipton, M. Cutler, F. Nigl, D. Cohen and H. Lipson: Trends Food Sci. Technol., 43 (2015) 114. https://doi.org/10.1016/j.tifs.2015.02.004
  3. http://www.arabianbusiness.com/dubai-reveals-plan-forworld- s-first-3d-printed-office-building-597981.html
  4. http://advancedmanufacturing.org/micro-manufacturingkeeps- shrinking-envelope/
  5. https://www.nextbigfuture.com/2015/05/three-yearproject- to-enable-titanium.html
  6. http://www.fabricatingandmetalworking.com/2014/05/ large-scale-additive-manufacturing-bigger-is-better/
  7. Y. Koren: The global manufacturing revolution: productprocess- business integration and reconfigurable systems, John Wiley & Sons, (2010) 80.
  8. ASTM, F 2792-12a, ASTM International.
  9. M. Vaezi, H. Seitz and S. Yang: Int. J. Adv. Manuf. Technol., 67 (2013) 1721. https://doi.org/10.1007/s00170-012-4605-2
  10. S. Lim, R. A. Buswell, T. T. Le, S. A. Austin, A. G. F. Gibb and T. Thorpe: Autom. Constr., 21 (2012) 262. https://doi.org/10.1016/j.autcon.2011.06.010
  11. P. Bidare, I. Bitharas, R. M. Ward, M. M. Attallah and A. J. Moore: Acta Mater., 142 (2018) 107. https://doi.org/10.1016/j.actamat.2017.09.051
  12. A. Foroozmehr, M. Badrossamay and E. Foroozmehr: Mater. Des., 89 (2016) 255. https://doi.org/10.1016/j.matdes.2015.10.002
  13. D. L. Bourell, J. J. Beaman Jr, M. C. Leu and D. W. Rosen: US - TURKEY Workshop On Rapid Technologies, (2009) 5.
  14. A. K. Matta, D. R. Raju and K. N. S. Suman: Mater. Today, 2 (2015) 3438. https://doi.org/10.1016/j.matpr.2015.07.319
  15. A. B. M. Saifullah, S. H. Masood, M. Nikzad and M. Brandt: Reference module in materials science and materials engineering, (2016) 1.
  16. M. Upadhyay, T. Sivarupan and M. E. Mansori: J. Manuf. Processes, 29 (2017) 211. https://doi.org/10.1016/j.jmapro.2017.07.017
  17. R. Singh, J. Singh and S. Singh: Measurement, 78 (2016) 253. https://doi.org/10.1016/j.measurement.2015.10.016
  18. D. G. Ahn, S. H. Lee and D. Y. Yang: Int. J. Mach. Tools Manuf., 43 (2003) 1447. https://doi.org/10.1016/S0890-6955(03)00170-6
  19. A. Simchi: Mater. Sci. Eng. A, 428 (2006) 148. https://doi.org/10.1016/j.msea.2006.04.117
  20. J. P. Kruth, P. Mercelis, J. V. Vaerenbergh, L. Froyen and M. Rombouts: Rapid Prototyp. J., 11 (2005) 26. https://doi.org/10.1108/13552540510573365
  21. D. C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R. P. Dillon, J. O. Suh, A. A. Shapiro, Z. K. Liu and J. P. Borgonia: Sci. Rep., 4 (2014) 5357.
  22. H. Choi, J. M. Byun, W. Lee, S. R. Bang and Y. D. Kim: J. Korean Powder Metall. Inst., 23 (2016) 149. https://doi.org/10.4150/KPMI.2016.23.2.149
  23. A. Gaard, P. Krakhmalev and J. Bergstrom: J. Alloys Compd., 421 (2006) 166. https://doi.org/10.1016/j.jallcom.2005.09.084
  24. H. K. Garg and R. Singh: Mater. Sci. Forum, 808 (2014) 103.
  25. D. E. Cooper, N. Blundell, S. Maggs and G. J. Gibbons: J. Mater. Process. Technol., 213 (2013) 2191. https://doi.org/10.1016/j.jmatprotec.2013.06.021
  26. N. Kang, P. Coddet, Q. Liu, H. L. Liao and C. Coddet: Addit. Manuf., 11 (2016) 1. https://doi.org/10.1016/j.addma.2016.04.001
  27. M. Z. Arredondo, N. Boone, J. Willmott, D. T. D. Childs, P. Ivanov, K. M. Groom and K. Mumtaz: Mater. Des., 117 (2017) 305. https://doi.org/10.1016/j.matdes.2016.12.095
  28. T. Craeghs, S. Clijsters, E. Yasa and J. P. Kruth: Proceedings of the Solid Freeform Fabrication Symposium Austin, Texas, (2011) 212.
  29. S. Berumen, F. Bechmann, S. Lindner, J. P. Kruth and T. Craeghs: Phys. Procedia, 5 (2010) 617. https://doi.org/10.1016/j.phpro.2010.08.089
  30. S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach and A. T. Clare: Mater. Des., 95 (2016) 431. https://doi.org/10.1016/j.matdes.2016.01.099
  31. K. Alena, B. Vladimir, T. Sylvain, C. Cyrille and U. Victor: Mater. Sci. Forum., 879 (2017) 1008.
  32. C. Sanz and V. G. Navas: J. Mater. Process. Technol., 213 (2013) 2126. https://doi.org/10.1016/j.jmatprotec.2013.06.013
  33. http://www.instructables.com/id/3D-Print-Finishing-Technique- for-Improved-Surface-/
  34. http://www.sciencedirect.com/science/article/pii/ S0026065716300327
  35. E. Uhlmann, C. Schmiedel and J. Wendler: Procedia CIRP, 31 (2015) 209. https://doi.org/10.1016/j.procir.2015.03.091
  36. K. L. Tan and S. H. Yeo: Wear, 378 (2017) 90.
  37. V. Urlea and V. Brailovski: J. Mater. Process. Technol., 242 (2017) 1. https://doi.org/10.1016/j.jmatprotec.2016.11.014
  38. ASTM, F 3049-19, ASTM International.
  39. J. Slotwinski, A. Cooke and S. Moylan: National Institute of Standards and Technology, 7847 (2012).
  40. G. Guan, M. Hirsch, Z. H. Lu, D. T. D. Childs, S. J. Matcher, R. Goodridge, K. M. Groom and A. T. Clare: Mater. Des., 88 (2015) 837. https://doi.org/10.1016/j.matdes.2015.09.084
  41. P. Nanekar, A. Kumar and T. Jayakumar: Case Studies in Nondestructive Testing and Evaluation, 5 (2016) 9. https://doi.org/10.1016/j.csndt.2016.03.004
  42. N. V. Karthik, H. Gu, D. Pal, T. Starr and B. Stucker: 24th International Solid Freeform Fabrication Symposium, (2013) 311.
  43. F. H. Kim, S. P. Moylan, E. J. Garboczi and J. A. Slotwinski: Addit. Manuf., 17 (2017) 23. https://doi.org/10.1016/j.addma.2017.06.011
  44. S. Moylan, A. Cooke, K. Jurrens, J. Slotwinski and M. A. Donmez: National Institute of Standards and Technology, 7858 (2012).

Cited by

  1. Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting vol.25, pp.6, 2018, https://doi.org/10.4150/KPMI.2018.25.6.475