DOI QR코드

DOI QR Code

Effects of Gardeniae Jasminoides on RANKL-induced Osteoclastogenesis and Bone Resorption

치자 추출물이 RANKL 유도 파골세포 형성 및 골 흡수에 미치는 영향

  • Choi, You-kyung (Dept. of Korean Internal Medicine, Gachon University College of Korean Medicine) ;
  • Hwang, Gwi-seo (Dept. of Preventive Medicine, Gachon University College of Korean Medicine)
  • 최유경 (가천대학교 한의과대학 내과학교실) ;
  • 황귀서 (가천대학교 한의과대학 예방의학교실)
  • Received : 2017.12.06
  • Accepted : 2018.01.11
  • Published : 2017.12.30

Abstract

Objectives: This study was performed to investigate the effects of Gardenia jasminoides extract (GJ) on osteoclast differentiation and bone resorption in vitro. Methods: To investigate the effect of GJ on osteoclast differentiation, the mouse leukemic myeloid cell line RAW 264.7 was stimulated by RANKL (receptor activator of nuclear factor kB ligand). Osteoclast differentiation was measured by counting TRAP (+) MNC in the presence of RANKL. To elucidate the mechanism of the inhibitory effect of GJ on osteoclast differentiation, gene expression of TRAP, Cathepsin K, MMP-9, NFATc1, c-Fos, MITF, DC-STAMP, CTR, OC-STAMP and Atp6v0d2 was measured using reverse transcription-PCR (RT-PCR). Bone resorption was measured using the bone pit formation assay. Results: GJ decreased the number of TRAP (+) MNCs in the presence of RANKL. GJ inhibited the expression of cathepsin K, MMP-9, TRAP, MITF, NFATc1, c-Fos, iNON, OC-STAMP, Atp6v0d2, and DC-STAMP in the osteoclast, and inhibited bone pit formation in vitro. Conclusions: The results suggest that GJ has inhibitory effects on bone resorption resulting from inhibition of osteoclast differentiation and gene expression.

Keywords

References

  1. Kling JM, Clarke BL, Sandhu NP. Osteoporosis prevention, screening, and treatment: a review. J Womens Health 2014;23(7):563-72. https://doi.org/10.1089/jwh.2013.4611
  2. Sweet MG, Sweet JM, Jeremiah MP, Galazka SS. Diagnosis and treatment of osteoporosis. Am Fam Physician 2009;79(3):193-200.
  3. Park JH, Lee NK, Lee SY. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol Cells 2017;40(10):706-13.
  4. Miyamoto T, Suda T. Differentiation and function of osteoclasts. Keio J Med 2003;52(1):1-7. https://doi.org/10.2302/kjm.52.1
  5. Kim JH, Kim N. Regulation of NFATc1 in Osteoclast Differentiation. J Bone Metab 2014; 21(4):233-41. https://doi.org/10.11005/jbm.2014.21.4.233
  6. Jeong BS, Shin MG. Do-hae Hyang-yak(Saeng-yak) Dae-sajeon. Seoul: Young-lim-sa; 1990, p. 925-6.
  7. Yu Y, Feng XL, Gao H, Xie ZL, Dai Y, Huang XJ, et al. Chemical constituents from the fruits of Gardenia jasminoides Ellis. Fitoterapia 2012; 83(3):563-7. https://doi.org/10.1016/j.fitote.2011.12.027
  8. Oshima T, Sagara K, Yoshida T, Tong YY, Zhang GD, Chen YH. Determination of geniposide, gardenoside, geniposidic acid and genipin-1-beta -gentiobioside in Gardenia jasminoides by high-performance liquid chromatography. J Chromatogr 1988;455:410-4. https://doi.org/10.1016/S0021-9673(01)82148-8
  9. Sung YY, Lee AY, Kim HK. The Gardenia jasminoides extract and its constituent, geniposide, elicit anti-allergic effects on atopic dermatitis by inhibiting histamine in vitro and in vivo. J Ethnopharmacol 2014;156:33-40. https://doi.org/10.1016/j.jep.2014.07.060
  10. Chen YH, Lan T, Li J, Qiu CH, Wu T, Gou HJ, et al. Gardenia jasminoides attenuates hepatocellular injury and fibrosis in bile ductligated rats and human hepatic stellate cells. World J Gastroenterol 2012;18(48):7158-65. https://doi.org/10.3748/wjg.v18.i48.7158
  11. Akihisa T, Watanabe K, Yamamoto A, Zhang J, Matsumoto M, Fukatsu M. Melanogenesis inhibitory activity of monoterpene glycosides from Gardeniae Fructus. Chem Biodivers 2012; 9(8):1490-9. https://doi.org/10.1002/cbdv.201200030
  12. Zhang HY, Liu H, Yang M, Wei SF. Antithrombotic activities of aqueous extract from Gardenia jasminoides and its main constituent. Pharm Biol 2013;51(2):221-5. https://doi.org/10.3109/13880209.2012.717088
  13. Lee JH, Lee DU, Jeong CS. Gardenia jasminoides Ellis ethanol extract and its constituents reduce the risks of gastritis and reverse gastric lesions in rats. Food Chem Toxicol 2009;47(6):1127-31. https://doi.org/10.1016/j.fct.2009.01.037
  14. Wang L, Pi Z, Liu S, Liu Z, Song F. Targeted metabolome profiling by dual-probe microdialysis sampling and treatment using Gardenia jasminoides for rats with type 2 diabetes. Sci Rep 2017; 7(1):1010-5. https://doi.org/10.1038/s41598-017-01050-6
  15. Zhang H, Lai Q, Li Y, Liu Y, Yang M. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats. J Ethnopharmacol 2017;196:225-35. https://doi.org/10.1016/j.jep.2016.11.042
  16. Im M, Kim A, Ma JY. Ethanol extract of baked Gardeniae Fructus exhibits in vitro and in vivo anti-metastatic and anti-angiogenic activities in malignant cancer cells: Role of suppression of the NF-${\kappa}B$ and HIF-$1{\alpha}$ pathways. Int J Oncol 2016;49(6):2377-86. https://doi.org/10.3892/ijo.2016.3742
  17. Atkins GJ, Findlay DM. Osteocyte regulation of bone mineral: a little give and take. Osteoporos Int 2012;23(8):2067-79. https://doi.org/10.1007/s00198-012-1915-z
  18. Drake MT, Clarke BL, Oursler MJ, Khosla S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr Rev 2017;38(4):325-50. https://doi.org/10.1210/er.2015-1114
  19. Kim J, Lee H, Kang KS, Chun KH, Hwang GS. Cordyceps militaris mushroom and cordycepin inhibit RANKL-induced osteoclast differentiation. J Med Food 2015;18(4):446-52. https://doi.org/10.1089/jmf.2014.3215
  20. Fong D, Bisson M, Laberge G, McManus S, Grenier G, Faucheux N, et al. Bone morphogenetic protein-9 activates Smad and ERK pathways and supports human osteoclast function and survival in vitro. Cell Signal 2013;25(4):717-28. https://doi.org/10.1016/j.cellsig.2012.12.003
  21. Kim J, Lee HK, Chang TS, Kang KS, Hwang GS. Inhibitory effect of brazilin on osteoclast differentiation and its mechanism of action. Int Immunopharmacol 2015;29(2):628-34. https://doi.org/10.1016/j.intimp.2015.09.018
  22. Lu SY, Li M, Lin YL. MITF regulates osteoclastogenesis by modulating NFATc1 activity. Exp Cell Res 2014;328(1):32-43. https://doi.org/10.1016/j.yexcr.2014.08.018
  23. Park SH, Kim JY, Cheon YH, Baek JM, Ahn SJ, Yoon KH, et al. Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice. Phytother Res 2016;30(4):604-12. https://doi.org/10.1002/ptr.5565
  24. Zeng XZ, He LG, Wang S, Wang K, Zhang YY, Tao L, et al. Aconine inhibits RANKL -induced osteoclast differentiation in RAW264.7 cells by suppressing NF-${\kappa}B$ and NFATc1 activation and DC-STAMP expression. Acta Pharmacol Sin 2016;37(2):255-63. https://doi.org/10.1038/aps.2015.85
  25. Song J, Jing Z, Hu W, Yu J, Cui X. ${\alpha}$-Linolenic Acid Inhibits Receptor Activator of NF-${\kappa}B$ Ligand Induced (RANKL-Induced) Osteoclastogenesis and Prevents Inflammatory Bone Loss via Downregulation of Nuclear Factor-KappaB-Inducible Nitric Oxide Synthases (NF-${\kappa}B$-iNOS) Signaling Pathways. Med Sci Monit 2017;23:5056-69. https://doi.org/10.12659/MSM.904795
  26. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Cyclooxygenase pathways. Acta Biochim Pol 2014;61(4):639-49.
  27. Park JH, Lee NK, Lee SY. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol Cells 2017;40(10):706-13.
  28. Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, et al. Anti-inflammatory treatments for chronic diseases: a review. Inflamm Allergy Drug Targets 2013;12(5):349-61. https://doi.org/10.2174/18715281113129990053