DOI QR코드

DOI QR Code

Seasonal Variation of Primary Producer Phytoplankton Community in the Vicinity of the Oyster Farming Area between Tongyeong-Saryang Island

통영-사량도 굴 양식장 주변 해역에서 일차 생산자 식물플랑크톤 군집의 계절적 변화

  • 임영균 (한국해양과학기술원 남해특성연구센터) ;
  • 백승호 (한국해양과학기술원 남해특성연구센터)
  • Received : 2017.10.22
  • Accepted : 2017.11.08
  • Published : 2017.12.31

Abstract

The purpose of this study was to investigate the seasonal distribution of phytoplankton as prey for oysters and to characterize the environmental factors controlling their abundance from June 2016 to May 2017, in the northeast coast between Tongyeong and Saryang Island, particularly for the oyster farming area. During the survey period, water temperature changed from $7.54^{\circ}C$ in February to $29.5^{\circ}C$ in August. The abnormal high temperature persisted during one month in August. Salinity was low due to summer rainfall and typhoon. The lowest level was 30.68 psu in September, and it peaked at 34.24 psu in May. The dissolved oxygen (DO) concentration ranged from $6.0-9.45mg\;L^{-1}$, and the DO concentration in the surface layer was like that in the bottom layers. The seasonal trends of pH were also like those of DO. The pH ranged from 7.91 to 8.50. Nitrate with nitrite, phosphate, and silicate concentrations ranged from $0.14{\mu}M$ to $7.66{\mu}M$, from $0.01{\mu}M$ to $4.16{\mu}M$, and from $0.27{\mu}M$ to $20.33{\mu}M$, respectively. The concentration of chlorophyll a (Chl. a) ranged from $0.37{\mu}g\;L^{-1}$ to $2.44{\mu}g\;L^{-1}$ in the surface layer. The annual average concentration was $1.26{\mu}g\;L^{-1}$. The annual mean phytoplankton community comprised Bacillariophyta (69%), Dinophyta (17%), and Cryptophyta (10%), respectively. Dinoflagellate Prorocentrum donghaiense in June was the most dominant at 90%. In the summer, diatom Chaetoceros decipiens, Rhizosolenia setigera and Pseudo-nitzschia delicatissima were dominant. These species shifted to diatom Chaetoceros spp. and Crytophyta species in autumn. In the winter, high densities of Skeletonema spp. and Eucampia zodiacus were maintained. Therefore, the researchers thought that the annual mean Chl. a concentration was relatively lower to sustain oyster feeding, implying that the prey organism (i.e., phytoplankton) was greatly controlled by continuous filter feeding behavior of oyster in the vicinity area of the oyster culture farm.

남해안 통영-사량도 동북부의 굴 양식장 주변 해역에서 2016년 6월부터 2017년 5월까지 식물플랑크톤군집의 계절변동 및 환경특성을 조사하였다. 본 연구는 굴의 먹이생물인 식물플랑크톤의 현존량이 계절적으로 어떻게 분포하고, 그들의 현존량을 조절하는 환경인자 특성을 규명하고자 하였다. 조사 기간 동안 수온은 2월 $7.54^{\circ}C$에서 8월 $29.5^{\circ}C$로 변화하였고, 하계에 고수온현상이 지속되었다. 염분은 하계 집중강우와 태풍의 영향으로 31 psu 전후로 낮게 관찰되었고, 최저치는 9월에 30.68 psu로, 최고치는 5월 34.24 psu로 관찰되었다. pH는 표층에서 7.95~8.50로, 저층의 7.91~8.3보다 조금 높게 관찰되었으며, 용존산소는 pH와 유사하게 표층에서 $6.0{\sim}9.45mg\;L^{-1}$로 높게 나타났고, 저층에서는 하계에 $5.25mg\;L^{-1}$의 전후로 낮게 관찰되었다. 질산염+아질산염은 $0.14{\mu}M$에서 $7.66{\mu}M$로, 인산염은 $0.01{\mu}M$에서 $4.16{\mu}M$로, 규산염은 $0.27{\mu}M$에서 $20.33{\mu}M$로 각각 변화하였다. 표층 Chl. a 농도는 $0.37{\mu}g\;L^{-1}$에서 $2.44{\mu}g\;L^{-1}$로 변화하였고, 연평균 $1.26{\mu}g\;L^{-1}$로 관찰되었다. 식물플랑크톤 군집은 연평균 규조류가 69%로 가장 높았고, 다음으로 와편모조류가 17%, 은편모조류 10% 순으로 나타났다. 6월에는 와편모조류 P. donghaiense가 90%로 극우점하였고, 7월은 규조류 Chaetoceros decipiens가 우점하였다. 하계에는 Rhizosolenia setigera와 Pseudo-nitzchia delicatissima가 높게 나타났고, 추계에는 Chaetoceros spp.와 함께 은편모그룹이 점차적으로 증가하였다. 동계에는 Skeletonema spp.와 Eucampia zodiacus가 높은 밀도로 출현하였다. 결과적으로 굴 양식장 주변 해역에서 계절에 관계없이 Chl. a 농도가 $2.5{\mu}g\;L^{-1}$ 이하로 나타났고, 연평균이 $1.26{\mu}g\;L^{-1}$로 일정하게 낮게 나타난 것은 지속적으로 여과섭식하는 굴의 성장특성 때문에 일정의 식물플랑크톤 현존량이 제어되고 있다는 것을 시사할 수 있었다.

Keywords

References

  1. Baek SH, DS Kim, MH Son, SM Yun and YO Kim. 2015. Seasonal distribution of phytoplankton assemblages and nutrient-enriched bioassays as indicators of nutrient limitation of phytoplankton growth in Gwangyang Bay, Korea. Estuar. Coast. Shelf Sci. 163:265-278. https://doi.org/10.1016/j.ecss.2014.12.035
  2. Baek SH, Shimode S and T Kikuchi. 2007. Reproductive ecology of the dominant dinoflagellate, Ceratium fusus in coastal area of Sagami Bay, Japan. J. Oceanogra. 63:35-45. https://doi.org/10.1007/s10872-007-0004-y
  3. Clarke KR and Warwick RM. 2001. Change in Marine Communities: An approach to statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth, p. 179.
  4. Cressman KA, MH Posey, MA Mallin, LA Leonard and TD Alphin. 2003. Effects of oyster reefs on water quality in a tidal creek estuary. J. Shellfish Res. 22:753-762.
  5. Guinder VA, CA Popovich, JC Molinero and J Marcovecchio. 2013. Phytoplankton summer bloom dynamics in the Bahia Blanca Estuary in relation to changing environmental conditions. Cont. Shelf Res. 52:150-158. https://doi.org/10.1016/j.csr.2012.11.010
  6. Huang C and Y Qi. 1997. The abundance cycle and influence factors on red tide phenomena of Noctiluca scintillans (Dinophyceae) in Dapeng Bay, the South China Sea. J. Plankton Res. 19:303-318. https://doi.org/10.1093/plankt/19.3.303
  7. Ito Y, T Katano, N Fujii, M Koriyama, K Yoshino and H Yuichi. 2013. Decreases in turbidity during neap tides initiate late winter blooms of Eucampia zodiacus in a macrotidal embayment. J. Oceanogr. 69:467-479. https://doi.org/10.1007/s10872-013-0187-3
  8. Kobayashi M, EE Hofmann, EN Powell, JM Klinck and K Kusaka. 1997. A population dynamics model for the Japanese oyster, Crassostrea gigas. Aquaculture 149:285-321. https://doi.org/10.1016/S0044-8486(96)01456-1
  9. Lee YS, YT Park, KY Kim, YK Choi and PY Lee. 2006. Characteristics of costal water quality after diatom blooms due to freshwater inflow. J. Korean Soc. Mar. Environ. Saf. 12:75-79.
  10. Lim DB, CH Cho and WS Kwon. 1975. On the oceanographic conditions of oyster farming area near Chungmu. Bull. Korean Fish. Soc. 8:61-67.
  11. Nakamura Y and F Kerciku. 2000. Effects of filter-feeding bivalves on the distribution of water quality and nutrient cycling in a eutrophic coastal lagoon. J. Mar. Syst. 26:209-221. https://doi.org/10.1016/S0924-7963(00)00055-5
  12. Newell RIE and J Ott. 1998. Macrobenthic communities and eutrophication. In Ecosystems at the land-sea margin: drainage basin to coastal sea (Malone TC, A Malej, LW Harding, N Smodlaka and RE Turner eds.). Coast. Estuar. Stud. vol 55. pp. 265-293. American Geophysicol Union. Washington DC.
  13. NIFS 2012. Standard Manual of Pacific Oyster Hanging Culture 2012. p. 205.
  14. Nishikawa T, Y Hori, K Tanida and I Imai. 2007. Population dynamics of the harmful diatom Eucampia zodiacus Ehrenberg causing bleachings of Porphyra thalli in aquaculture in Harima-Nada, the Seto Inland Sea, Japan. Harmful Algae 6:763-773. https://doi.org/10.1016/j.hal.2007.04.005
  15. Parsons TR, Y Maita and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, p. 173.
  16. Pomeroy LR, CF D'Elia and LC Schaffner. 2006. Limit to topdown control of phytoplankton by oysters in Chesapeake Bay. Mar. Ecol. Prog. Ser. 325:301-309. https://doi.org/10.3354/meps325301
  17. Sournia, A. 1978. Phytoplankton manual. Monographs on Oceanographic Methodology 6. UNESCO, Paris. p. 337.
  18. Thompson PA, PI Bonham and KM Swadling. 2008. Phytoplankton blooms in the Huon Estuary, Tasmania: top-down or bottom-up control? J. Plankton Res. 30:735-753. https://doi.org/10.1093/plankt/fbn044