DOI QR코드

DOI QR Code

A Study on Simulation of Cavity and Relaxation Zone Using Finite Element Method

유한요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구

  • You, Seung-Kyong (Dept. of Civil Engineering, Myongji College) ;
  • Kim, Joo-Bong (School of Civil and Environmental Engineering, Chung-Ang Univ.) ;
  • Han, Jung-Geun (School of Civil and Environmental Engineering, Urban Design and Study, Chung-Ang Univ.) ;
  • Hong, Gi-Gwon (Institute of Technology Research and Development, Korea Engineering & Construction) ;
  • Yun, Jung-Mann (Dept. of Construction Information System, ShinAnsan Univ.) ;
  • Lee, Kang-Il (Dept. of Civil Engineering, Deajin Univ.)
  • Received : 2017.11.28
  • Accepted : 2017.12.01
  • Published : 2017.12.30

Abstract

In order to prevent the ground subsidence accidents caused by the occurrence of underground cavity, it is necessary to evaluate the mechanical characteristics in the relaxation zone of the underground cavity. Also, the relaxation zone including underground cavity be appropriately reinforced. This paper described analysis results based on finite element method that was conducted to analyze the mechanism for occurrence of the relaxation zone around the underground cavity. The finite element analysis applied in forced displacement was carried out to simulate the underground cavity and relaxation zone, and then there were compared with previous research results. The analysis results showed that the void distribution of soil around the underground cavity has figured out. As a result, the area of the relaxation zone could be quantitatively presented by reduction characteristics of the shear stress.

지반 공동 발생으로 인한 지반함몰 사고를 미연에 방지하기 위해서는 발생된 공동 주변 지반의 이완영역에 대한 역학적 특성 평가와 더불어 이에 상응하는 적합한 보강 대책을 신속히 수립하는 것이 필요하다. 본 논문에서는 지중 공동 주변의 이완영역 발생에 대한 메커니즘 분석을 위해 유한요소 수치해석을 실시하였다. 수치해석에서는 지중 공동과 이완영역을 모사하기 위해 강제변위법을 적용하였으며, 수치해석 결과는 실내모형실험을 수행한 기존 연구 결과를 이용하여 검증하였다. 유한요소 수치해석 결과로부터 토사 유실로 인한 공동 주변 지반의 간극비 분포 특성을 파악하였으며, 전단응력 감소 특성을 분석하여 이완영역의 범위를 정량적으로 제시하였다.

Keywords

References

  1. Brady, B. H. G. and Brown, E. T. (1985), Rock mechanics for underground mining, George Allen and Unwin., pp.527.
  2. Choi S. K., Back S. I., An J. B., and Kwon T. I. (2016), "Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction", Journal of Korean Tunnelling and Underground Space Assoication, Vol.18, No.2, pp.143-154. https://doi.org/10.9711/KTAJ.2016.18.2.143
  3. Kim, J. B., You, S. K., Han, J. G., Hong, G. G. and Park, J. B. (2017), "A Study on Simulation of Cavity and Relaxation Zone Using Laboratory Model Test and Discrete Element Method", J. Korean Geosynthetics Society, Vol.16, No.2, pp.11-21.
  4. Kim, N. Y. and Umm, T. W. (2013), "A case study on the Chimney collapse of tunnel under construction", Proceeding of Korean geo-environmental society, Seoul, pp.43-53.
  5. Korea institute of geoscience and mineral resources (2014), Research on causes and policy suggestions by sinkhole type, Research report, pp.18-39.
  6. Kuwano, R., Sato, M., and Sera, R. (2010), "Study on the detection of underground cavity and ground loosening for the prevention of ground cave-in accident", Japanese Geotechnical Journal Vol.5, No.2, pp.219-229. https://doi.org/10.3208/jgs.5.219
  7. Lee, S. H., Lee H. L., and Song, K. I. (2016), "The effect of formation of spherical underground cavity on ground surface settlement : Numerical analysis using 3D DEM", Journal of Korean Tunnelling and Underground Space Association, Vol.18, No.2, pp.129-142. https://doi.org/10.9711/KTAJ.2016.18.2.129
  8. Park, I. J. and Park, S. H. (2014), "Cause analysis and counterplan for sinkhole", Magazine of Korean Society of Hazard Mitigation, Vol.14, No.5, pp.12-17.
  9. Song, K. I. and Yoon, J. S. (2015), Tunnel deformation mechanism, CIR, Seoul.
  10. Suchowerska, A. M., Merifield, R. S., Carter, J. P., and Clausen, J. (2012), "Prediction of underground cavity roof collapse using the Hoek-Brown failure criterion", Computers and Geotechnics, Vol.44, pp.325-342.