DOI QR코드

DOI QR Code

Water-holding Capacity and Antimicrobial Activity and of 1, 2-Hexanediol Galactoside Synthesized by β-Galactosidase

베타-갈락토시데이즈를 이용하여 합성한 1, 2-Hexanediol Galactoside의 보습력과 항균력에 대한 연구

  • Kim, Yi-Ok (Department of Biotechnology, Korea National University of Transportation) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
  • 김이옥 (한국교통대학교 생명공학과) ;
  • 정경환 (한국교통대학교 생명공학과)
  • Received : 2017.11.21
  • Accepted : 2017.12.22
  • Published : 2017.12.30

Abstract

We carried out the enzymatic synthesis of 1, 2-hexanediol galactoside (HD-gal) by transgalactosylation reaction using recombinant Escherichia coli ${\beta}-galactosidase$ (${\beta}-gal$). The amounts of ${\beta}-gal$ and 1, 2-hexanediol (HD), pH, and temperature, respectively, were first optimized (${\beta}-Gal$, 4.8 U/mL; HD, 75 mM; pH, 7.0; temperature, $37^{\circ}C$). Under these optimal conditions, about 96% HD was converted to HD-gal. When we investigated the water holding capacities (WHCs) of HD and HD-gal using pig epidermis in the concentrations of 84.4, 126.6, 168.8, 211.0 mM, WHC of HD-gal was superior to HD. In particular, at 168.8 mM HD and HD-gal, WHC of HD-gal showed about 20% greater than that of HD. However, it was observed that MIC values against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus of HD-gal were about three to ten times greater than those of HD, although MIC value of HD-gal against Enterococcus faecalis was almost the same as that of HD. Finally, it was concluded that the covalent bonding of a galactose molecule to HD (transgalactosylation) resulted in an increase in WHC of HD-gal and a decrease in anti-bacterial activity.

재조합 대장균의 ${\beta}-galactosidase$ (${\beta}-gal$)을 이용하여 transgalactosylation 반응으로 1, 2-hexanediol galactoside (HD-gal) 합성을 수행하였다. 먼저, 합성 반응을 수행할 때의, ${\beta}-gal$의 양, 1, 2-hexanediol(HD)의 양, 반응 pH, 반응 온도 등 반응조건을 최적화하였다. ${\beta}-Gal$은 4.8 U/mL, HD는 75 mM, pH는 7.0, 온도는 $37^{\circ}C$의 조건이 최적 합성 조건이었으며, 이때, 약 96%의 HD가 HD-gal로 conversion 되었다. 그리고, 돼지 epidermis를 이용하여 HD와 HD-gal의 water holding capacity (WHC)를 비교 측정하여 보았는데, 이때, epidermis 표면에 HD와 HD-gal을 84.4, 126.6, 168.8, 211.0 mM을 처리하였으며, 84.4, 126.6, 168.8 mM의 HD와 HD-gal을 처리하였을 경우 HD-gal이 HD보다 더 큰 WHC 값을 보여 주었고, 168.8 mM의 경우에는 HD-gal이 HD와 비교하여 최대 약 20% 정도의 더 큰 WHC 값을 보여 주었다. 그러나, HD-gal의 MIC (minimal inhibitory concentration) 값을 측정해 본 결과, Enterococcus faecalis의 경우에는 HD의 MIC와 같았으나, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus의 경우에는 약 3배에서 10배까지 HD-gal의 MIC 값이 HD에 비하여 증가되는 현상이 관찰되었다. 결론적으로, HD의 transgalactosylation 반응으로 인하여 합성된 HD-gal의 보습력은 HD에 비하여 증가되고, HD-gal의 항균력은 HD와 비교하여 감소하는 현상을 관찰하였다.

Keywords

References

  1. V. Jadhav, S. Dhande, and V. Kadam, Cosmetics side effects, World J. Pharm. Pharm. Sci., 6, 327 (2017).
  2. G. Deza and A. M. Gimenez-Arnau, Allergic contact dermatitis in preservatives: current standing and future options, Curr. Opin. Allergy Clin. Immunol., 17, 263 (2017). https://doi.org/10.1097/ACI.0000000000000373
  3. W. Johnson, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks, R. C. Shank, T. J. Slaga, P. W. Snyder, and F. A. Andersen, Safety assessment of 1, 2-glycols as used in cosmetics, F. Alan AndersenInt. J. Toxicol., 31, 147S (2012). https://doi.org/10.1177/1091581812460409
  4. E. Lee, S. An, S. -A. Cho, Y. Yun, J. Han, Y. K. Hwang, H. K. Kim, and T. R. Lee, The influence of alkane chain length on the skin irritation potential of 1,2-alkanediols, Int. J. Cosmet. Sci., 33, 421 (2011). https://doi.org/10.1111/j.1468-2494.2011.00646.x
  5. E. Lee, S. An, D. Choi, S. Moon, and I. Chang, Comparison of objective and sensory skin irritations of several cosmetic preservatives, Contact Dermatitis, 56(3), 131 (2007). https://doi.org/10.1111/j.1600-0536.2007.01001.x
  6. S. E. Lee, H. Y. Lee, and K. H. Jung, Production of chlorphenesin galactoside by whole cells of ${\beta}$-galactosidase-containing Escherichia coli, J. Microbiol. Biotechnol., 23, 826 (2013). https://doi.org/10.4014/jmb.1211.11009
  7. S. E. Lee, T. M. Jo, H. Y. Lee, J. Lee, and K. H. Jung, ${\beta}$-Galactosidase-catalyzed synthesis of galactosyl chlorphenesin and its characterization, Appl. Biochem. Biotechnol., 171, 1299 (2013). https://doi.org/10.1007/s12010-013-0213-3
  8. H. Y. Lee and K. H. Jung, Enzymatic synthesis of 2-phenoxyethanol galactoside by whole cells of ${\beta}$-galactosidase-containing Escherichia coli, J. Microbiol. Biotechnol., 24, 1254 (2014). https://doi.org/10.4014/jmb.1404.04004
  9. K. H. Jung and H. Y. Lee, Escherichia coli ${\beta}$-galactosidase-catalyzed synthesis of 2-phenoxyethanol galactoside and its characterization, Bioprocess Biosyst. Eng., 38, 365 (2015). https://doi.org/10.1007/s00449-014-1276-4
  10. Y. O. Kim and K. H. Jung, Enzymatic synthesis of 1, 2-hexanediol galactoside by whole cells of ${\beta}$-galactosidase-containing recombinant Escherichia coli, J. Life Sci., 26, 608 (2016). https://doi.org/10.5352/JLS.2016.26.5.608
  11. D. Melisi, A. Curcio, E. Luongo, E. Morelli, and M. G. Rimoli, D-Galactose as a vector for prodrug design, Curr. Top. Med. Chem., 11, 2288 (2011). https://doi.org/10.2174/156802611797183258
  12. E. B. Herman, G. J. Haas, W. H. Crosby, and C. J. Cante, Antimicrobial action of short chain alcohols and glycols, J. Food Saf., 2, 131 (1980). https://doi.org/10.1111/j.1745-4565.1980.tb00391.x
  13. K. A. Fitzgerald, A. Davies, and A. D. Russell, Mechanism of action of chlorhexidine diacetate and phenoxyethanol singly and in combination against gram-negative bacteria, Microbios., 70(284-285), 215 (1992).
  14. S. Langsrud, K. Steinhauer, S. Luthje, K. Weber, P. Goroncy-Bermes, and A. L. Holck, Ethylhexylglycerin impairs membrane integrity and enhances the lethal effect of phenoxyethanol, PLoS ONE, 11(10), e0165228. doi:10.1371/journal.pone.0165228 (2016).
  15. K. H. Jung, Enhanced enzyme activities of inclusion bodies of recombinant ${\beta}$-galactosidase via the addition of inducer analog after L-arabinose induction in the araBAD promoter system of Escherichia coli. J. Microbiol. Biotechnol., 18, 434 (2008).
  16. Y. O. Kim and K. H. Jung, ${\beta}$-Galactosidase-catalyzed synthesis of 1, 2-hexanediol galactoside and its purification using ethyl acetate extraction followed by silica gel chromatography, J. Korean Oil Chem. Soc., 33, 498 (2016). https://doi.org/10.12925/jkocs.2016.33.3.498
  17. S. E Lee, H. B. Seo, H. J. Kim, J. H. Yeon, and K. H. Jung, Galactooligosacchride synthesis by active ${\beta}$-galactosidase inclusion bodies-containing Escherichia coli cells, J. Microbiol. Biotechnol., 21, 1151 (2011). https://doi.org/10.4014/jmb.1105.05021
  18. F. Kong, C. Galzote, and Y. Duan, Change in skin properties over the first 10 years of life: a cross-sectional study, Arch. Dermatol. Res., 309, 653 (2017). https://doi.org/10.1007/s00403-017-1764-x
  19. C. W. Blichmann and J. Serup, Assessment of skin moisture; measurement of electrical conductance, capacitance and transepidermal water loss, Acta. Derm. Venereol., 68, 284 (1988).
  20. H. Tagami, Electrical measurement of the hydration state of the skin surface in vivo, Br. J. Dermatol., 171, 29 (2014).
  21. F. Gioia and L. Celleno, The dynamics of transepidermal water loss (TEWL) from hydrated skin, Skin Res. Technol., 8, 176 (2002).
  22. A. K. Haghi, A mathematical model of the drying process, Acta Polytech., 41, 21 (2001).