DOI QR코드

DOI QR Code

Isolation and characterization in the exhausted mine and Jeju Gotjawal

국내 폐광산 및 제주 곶자왈 지역내의 미생물 분리 및 특징 분석

  • Kim, Ye-Eun (Department of Biology, Jeju National University) ;
  • Koh, Hyeon-Woo (Department of Biology, Jeju National University) ;
  • Kim, So-Jeong (Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Do, Kyoung-Tag (Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University) ;
  • Park, Soo-Je (Department of Biology, Jeju National University)
  • 김예은 (제주대학교 생물학과) ;
  • 고현우 (제주대학교 생물학과) ;
  • 김소정 (한국지질자원연구원 지질환경연구본부) ;
  • 도경탁 (제주대학교 생명공학부 동물생명공학전공) ;
  • 박수제 (제주대학교 생물학과)
  • Received : 2017.01.24
  • Accepted : 2017.03.21
  • Published : 2017.12.31

Abstract

Most of acidophiles are found in the various low pH environments and affect to metal cycle through oxidation and reduction reactions. The present study was carried out above 50 strains as acidophiles isolated from acidic soils of exhausted mine and Jeju Gotjawal. Finally, total 19 strains obtained and were tentatively identified based on comparative similarity analysis for 16S rRNA gene sequence and physiological characterizations. These isolates belonged to Gammaproteobacteria (6 strains), Actinobacteria (5 strains), Betaproteobacteria (4 strains), Alphaproteobacteria (2 strains), and Bacilli (2 strains). We observed that these isolates can grow under low pH culture condition. This case study for analysis physiological characterizations of indigenous microorganisms in acidic soil might provide basic information on useful application.

호산성미생물은 pH가 낮은 환경에서 살아가는 미생물로서 산화, 환원 반응을 통하여, 금속을 포함한 물질들의 순환에 영향을 미친다. 본 연구에서는, 국내의 폐광산 및 제주 곶자왈 지역의 산성토양으로부터 배양을 통해 50여 종 이상의 미생물을 분리하였으며, 분자계통학적 분석을 통하여 최종, Gammaproteobacteria 강에 속하는 미생물 6종, Actinobacteria 강에 속하는 미생물 5종, Betaproteobacteria 강에 속하는 미생물 4종, Alphaproteobacteria 강에 속하는 미생물 2종, Bacilli 강에 속하는 미생물 2종을 얻을 수 있었다. 이들은 공통적으로 낮은 pH의 조건에서 살아가는 미생물임을 확인 할 수 있었다. 본 연구를 통하여 확보한 산성토양내의 미생물들의 생리적 특징은 앞으로의 다양한 국내 미생물 자원의 활용에 기초적인 지식을 제공할 것으로 기대된다.

Keywords

References

  1. Baker-Austin, C. and Dopson, M. 2007. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165-171. https://doi.org/10.1016/j.tim.2007.02.005
  2. Choi, H., Koh, H.W., Kim, H., Chae, J.C., and Park, S.J. 2016. Microbial community composition in the marine sediments of Jeju island: next-generation sequencing surveys. J. Microbiol. Biotechnol. 26, 883-890. https://doi.org/10.4014/jmb.1512.12036
  3. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368-376. https://doi.org/10.1007/BF01734359
  4. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406-416. https://doi.org/10.1093/sysbio/20.4.406
  5. Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770-773. https://doi.org/10.1046/j.1462-2920.2002.00362.x
  6. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
  7. Hedrich, S., Schlomann, M., and Johnson, D.B. 2011. The ironoxidizing proteobacteria. Microbiology 157, 1551-1564. https://doi.org/10.1099/mic.0.045344-0
  8. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  9. Koh, H.W., Hong, H., Min, U.G., Kang, M.S., Kim, S.G., Na, J.G., Rhee, S.K., and Park, S.J. 2015a. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574-4579. https://doi.org/10.1099/ijsem.0.000614
  10. Koh, H.W., Kim, S.J., Rhee, S.K., and Park, S.J. 2015b. Isolation and characterization analysis of the halophilic archaea isolated from solar saltern, Gomso. Korean J. Microbiol. 51, 427-434. https://doi.org/10.7845/kjm.2015.5041
  11. Liu, Y., Tang, H., Lin, Z., and Xu, P. 2015. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 33, 1484-1492. https://doi.org/10.1016/j.biotechadv.2015.06.001
  12. Muravyov, M.I. and Fomchenko, N.V. 2013. Leaching of nonferrous metals from copper converter slag with application of acidophilic microorganisms. Appl. Biochem. Microbiol. 49, 562-569. https://doi.org/10.1134/S0003683813060136
  13. Oren, A. 2010. Acidophiles. John Wiley & Sons, Inc., Online Publication.
  14. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  15. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  16. Waksman, S.A. and Joffe, J.S. 1922. Microorganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus, Thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J. Bacteriol. 7, 239-256.
  17. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991