DOI QR코드

DOI QR Code

The effects of carbon coating onto graphite filler on the structure and properties of carbon foams

  • Kim, Ji-Hyun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Do Young (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2016.10.19
  • Accepted : 2016.11.05
  • Published : 2017.01.31

Abstract

Keywords

References

  1. Pranoto I, Leong KC. An experimental study of flow boiling heat transfer from porous foam structures in a channel. Appl Therm Eng, 70, 100 (2014). https://doi.org/10.1016/j.applthermaleng.2014.04.027.
  2. Steinmann WD, Tamme R. Latent heat storage for solar steam systems. J Sol Energy Eng, 130, 011004 (2008). https://doi.org/10.1115/1.2804624.
  3. do Couto Aktay KS, Tamme R, Müller-Steinhagen H. Thermal conductivity of high-temperature multicomponent materials with phase change. Int J Thermophys, 29, 678 (2008). https://doi.org/10.1007/s10765-007-0315-7.
  4. Klett J, Hardy R, Romine E, Walls C, Burchell T. High-thermalconductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon, 38, 953 (2000). https://doi.org/10.1016/S0008-6223(99)00190-6.
  5. Focke WW, Badenhorst H, Ramjee S, Kruger HJ, Schalkwyk RV, Rand B. Graphite foam from pitch and expandable graphite. Carbon, 73, 41 (2014). https://doi.org/10.1016/j.carbon.2014.02.035.
  6. Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: effects of composition and softening points of coal tar pitch. Carbon, 94, 432 (2015). https://doi.org/10.1016/j.carbon.2015.07.030.
  7. Deng T, Zhou X. Porous graphite prepared by molybdenum oxide catalyzed gasification as anode material for lithium ion batteries. Mater Lett, 176, 151 (2016). https://doi.org/10.1016/j.matlet.2016.04.073.
  8. Nada SA, Alshaer WG. Comprehensive parametric study of using carbon foam structures saturated with PCMs in thermal management of electronic systems. Energy Convers Manage, 105, 93 (2015). https://doi.org/10.1016/j.enconman.2015.07.071.
  9. Li Q, Chen L, Ding J, Zhang J, Li X, Zheng K, Zhang X, Tian X. Open-cell phenolic carbon foam and electromagnetic interference shielding properties. Carbon, 104, 90 (2016). https://doi.org/10.1016/j.carbon.2016.03.055.
  10. Kim JH, Lee S, Jeong E, Lee YS. Fabrication and characteristics of mesophase pitch-based graphite foams prepared using PVA-AAc solution. Appl Chem Eng, 26, 706 (2015). https://doi.org/10.14478/ace.2015.1102.
  11. Lee S, Kim JH, Jeong E, Lee YS. The preparation and property of carbon foams from carbon black embedded pitch using PU template. Korean Chem Eng Res, 54, 268 (2016). https://doi.org/10.9713/kcer.2016.54.2.268.
  12. Kim JH, Lee YS. Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA-AAc solution. J Ind Eng Chem, 30, 127 (2015). https://doi.org/10.1016/j.jiec.2015.05.013.
  13. Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Gloc M, Kulesza M, Kowalski M, Krauze S, Lewandowska M. Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials. Compos Struct, 140, 67 (2016). https://doi.org/10.1016/j.compstruct.2015.12.022.
  14. Ciecierska E, Jurczyk-Kowalska M, Bazarnik P, Kowalski M, Krauze S, Lewandowska M. The influence of carbon fillers on the thermal properties of polyurethane foam. J Therm Anal Calorim, 123, 283 (2016). https://doi.org/10.1007/s10973-015-4940-2.
  15. Sun Y, Tang B, Huang W, Wang S, Wang Z, Wang X, Zhu Y, Tao C. Preparation of graphene modified epoxy resin with high thermal conductivity by optimizing the morphology of filler. Appl Therm Eng, 103, 892 (2016). https://doi.org/10.1016/j.applthermaleng.2016.05.005.
  16. Gantayat S, Prusty G, Rout DR, Swain SK. Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties. New Carbon Mater, 30, 432 (2015). https://doi.org/10.1016/S1872-5805(15)60200-1.
  17. Narasimman R, Vijayan S, Prabhakaran K. Carbon-carbon composite foams with high specific strength from sucrose and milled carbon fiber. Mater Lett, 144, 46 (2015). https://doi.org/10.1016/j.matlet.2015.01.016.
  18. Rahimi Z, Zinatizadeh AAL, Zinadini S. Preparation of high antibiofouling amino functionalized MWCNTs/PES nanocomposite ultrafiltration membrane for application in membrane bioreactor. J Ind Eng Chem, 29, 366 (2015). https://dx.doi.org/10.1016/j.jiec.2015.04.017.
  19. Farhan S, Wang R, Jiang H, Li K, Wang C. A novel combination of simple foaming and freeze-drying processes for making carbon foam containing multiwalled carbon nanotubes. Ceram Int, 42, 8980 (2016). https://doi.org/10.1016/j.ceramint.2016.01.131.
  20. Lee SE, Lee MY, Lee MK, Jeong E, Lee YS. Effect of fluorination on the mechanical behavior and electromagnetic interference shielding of MWCNT/epoxy composites. Appl Surf Sci, 369, 189 (2016). https://doi.org/10.1016/j.apsusc.2016.01.266.
  21. Chen D, Yang J, Chen G. The physical properties of polyurethane/graphite nanosheets/carbon black foaming conducting nanocomposites. Compos Part A Appl Sci Manuf, 41, 1636 (2010). https://doi.org/10.1016/j.compositesa.2010.07.013.
  22. Yuan Y, Zhang N, Li T, Cao X, Long W. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study. Energy, 97, 488 (2016). https://doi.org/10.1016/j.energy.2015.12.115.
  23. Jana P, Fierro V, Pizzi A, Celzard A. Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers. Mater Des, 83, 635 (2015). https://doi.org/10.1016/j.matdes.2015.06.057.
  24. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci, 36, 638 (2011). https://dx.doi.org/10.1016/j.progpolymsci.2010.11.003.
  25. Katzman HA. Carbon-reinforced metal-matrix composites. US Patent 4,376,803 (1983).
  26. Lee YS, Kim TJ. Rheological behaviors of mesophase pitches prepared from coal tar pitch as carbon fiber precursor. J Korean Ind Eng Chem, 10, 690 (1999).
  27. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascon JMD. Comparative performance X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J Mater Chem, 8, 2875 (1998). https://doi.org/10.1039/A805841E.