DOI QR코드

DOI QR Code

A Maximum Power Control of IPMSM with Real-time Parameter Identification

  • Jun, Hyunwoo (Dept. of Electrical Engineering, Hanyang University) ;
  • Ahn, Hanwoong (Dept. of Electrical Engineering, Hanyang University) ;
  • Lee, Hyungwoo (Dept. of Railway Vehicle System Engineering, Korea National University of Transportation) ;
  • Go, Sungchul (Mechatronics R&D Center, Samsung Electronics Co.) ;
  • Lee, Ju (Dept. of Electrical Engineering, Hanyang University)
  • Received : 2016.02.03
  • Accepted : 2016.06.08
  • Published : 2017.01.02

Abstract

This paper proposed a new real-time parameter tracking algorithm. Unlike the convenience algorithms, the proposed real-time parameter tracking algorithm can estimate parameters through three-phase voltage and electric current without coordination transformation, and does not need information on magnetic flux. Therefore, it can estimate parameters regardless of the change according to operation point and cross-saturation effect. In addition, as the quasi-real-time parameter tracking technique can estimate parameters through the four fundamental arithmetic operations instead of complicated algorithms such as numerical value analysis technique and observer design, it can be applied to low-performance DSP. In this paper, a new real-time parameter tracking algorithm is derived from three phase equation. The validity and usefulness of the proposed inductance estimation technique is verified by simulation and experimental results.

Keywords

References

  1. S. F. Zhao, X. Y. Huang, Y. F. Fang, and J. Li, "A Control Scheme for a High Speed Railway Traction System Base on High Power PMSM", 2015 6th Int. Conf. Power Electron. Syst. Appl., pp. 1-8, Dec. 2015.
  2. C. B. Park, B. S. Lee, and H. W. Lee, "Performance Comparison of the Railway Traction IPM Motors between Concentrated Winding and Distributed Winding", J. Electr. Eng. Technol., Vol. 8, No. 1, pp. 118-123, Jan. 2013. https://doi.org/10.5370/JEET.2013.8.1.118
  3. K. D. Lee, J. Lee, and H. W. Lee, "Inductance Calculation of Flux Concentrating Permanent Magnet Motor through Nonlinear Magnetic Equivalent Circuit", IEEE Trans. Magnetics, Vol. 51, No. 11, Nov. 2015.
  4. W. H. Kim, M. J. Kim, K. D. Lee, J. J. Lee, J. H. Han, T. C. Jeong, S. Y. Cho, and J. Lee, "Inductance Calculation in IPMSM Considering Magnetic Saturation", IEEE Trans. Magnetics, Vol. 50, No. 1, Jan. 2014.
  5. E. S. Boje, J. C. Balda, R. G. Harley, and R. C. Beck, "Time-domain Identification of Synchronous Machine Parameters from Simple Standstill Test", IEEE Trans. Energy Convers., Vol. 5, No. 1, pp. 164-175, Mar. 1990. https://doi.org/10.1109/60.50828
  6. Rukmi Dutta and M. F. Rahman, "A Comparative Analysis of Two Test Methods of Measuring d - and q -Axes Inductances of Interior Permanent-Magnet Machine", IEEE Trans. Magnetics. Vol. 42, No. 11, pp. 3712-3718, Nov. 2006, https://doi.org/10.1109/TMAG.2006.880994
  7. Khwaja M. Rahman, Silva Hiti "Identification of Machine Parameters of a Synchronous Motor", IEEE Trans. Ind. Appl, Vol. 41, No. 2, pp. 557-565, Mar./ Apr. 2005. https://doi.org/10.1109/TIA.2005.844379
  8. T. Senjyu, N. Urasaki, T. Simabukuro and K. Uezato, "Using on-line parameter estimation to improve efficiency of IPM machine drives", in Proc. IEEE PESC, Vol. 2, pp. 815-820, Jun. 2002.
  9. T. Boileau, N. Leboeuf, B. Nahid-mobarakeh, and F. Meibody-Tabar, "Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study", IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp. 1944-1957, Jul./Aug. 2011. https://doi.org/10.1109/TIA.2011.2155010
  10. M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, "An Adaptive Interconnected Observer for Sensorless Control of PM Synchronous Motors with Online Parameter Identification", IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 739-748, Feb. 2013. https://doi.org/10.1109/TIE.2012.2206355
  11. S. Wang, S. Shi, C. Chen, G. Yang, and Z. Qu, "Identification of PMSM based on EKF and Elman Neural Network" in Proc. ICAL, pp. 1459-1463, Aug. 2009.
  12. H. W. Sim, J. S. Lee, and K. B. Lee, "On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter", J. Electr. Eng. Technol., Vol. 9, No. 2, pp. 600-608, Mar. 2013. https://doi.org/10.5370/JEET.2014.9.2.600
  13. A. Yoo, and S. K. Sul, "Design of Flux Observer Robust to Interior Permanent-Magnet Synchronous Motor Flux Variation", IEEE Trans. Ind. Appl., Vol. 45, No. 5, pp. 1670-1677, Sep./Oct. 2011. https://doi.org/10.1109/TIA.2009.2027516
  14. J. F. Gieras, Permanent Magnet Motor Technology, 3rd ed. CRC Press, 2009.
  15. Thomas M. Jahns, Gerald B. Kliman, and Tomas W. Neumann, "Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives", IEEE Trans. Ind. Appl., Vol. IA-22, No. 4, pp. 738-747, Jul. 1986. https://doi.org/10.1109/TIA.1986.4504786
  16. B. K. Bose, "A high-performance inverter-fed drive system of an interior permanent magnet synchronous machine", IEEE Trans. Ind. Appl., Vol. 24, No. 6, pp. 987-997, Nov./Dec. 1988. https://doi.org/10.1109/28.17470

Cited by

  1. A Parameter Identification Method Based on Forgetting Factor Dynamic Adjustment for PMSM Applied to the Rapid Control of Satellite Attitude vol.14, pp.1, 2019, https://doi.org/10.1007/s42835-018-00049-x