DOI QR코드

DOI QR Code

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei (College of Electrical Engineering, Zhejiang University) ;
  • Zeng, Zhiyong (College of Electrical Engineering, Zhejiang University) ;
  • Zhao, Rongxiang (College of Electrical Engineering, Zhejiang University)
  • Received : 2016.05.19
  • Accepted : 2016.08.13
  • Published : 2017.01.02

Abstract

A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

Keywords

References

  1. J. A. Guemes, A. M. Iraolagoitia, J. I. Del Hoyo, and P. Fernandez, "Torque Analysis in Permanent-Magnet Synchronous Motors: A Comparative Study," IEEE Trans. Energy Convers., vol. 26, no. 1, pp. 55-63, Mar. 2011. https://doi.org/10.1109/TEC.2010.2053374
  2. S. Chung, J. Kim, Y. Chun, B. Woo, and D. Hong, "Fractional Slot Concentrated Winding PMSM With Consequent Pole Ro-tor for a Low-Speed Direct Drive: Reduction of Rare Earth Permanent Magnet," IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 103-109, Mar. 2015. https://doi.org/10.1109/TEC.2014.2352365
  3. G. S. Buja and M. P. Kazmierkowski, "Direct torque control of PWM inverter-fed AC motors - a survey," IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744-757, Aug. 2004. https://doi.org/10.1109/TIE.2004.831717
  4. I. Takahashi and T. Noguchi, "A New Quick-Response and High-Efficiency Control Strategy Of An Induction-Motor," IEEE Trans. Ind. Appl., vol. IA-22, no. 5, pp. 820-827, Sep. 1986. https://doi.org/10.1109/TIA.1986.4504799
  5. M. Depenbrock, "Direct self-control (DSC) of inverter-fed induction machine," IEEE Trans. Power Electron., vol. 3, no. 4 , pp. 420-429, Oct. 1988. https://doi.org/10.1109/63.17963
  6. Y. Inoue, S. Morimoto and M. Sanada, "Examination and Linearization of Torque Control System for Direct Torque Con-trolled IPMSM," IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, Jan./Feb. 2010. https://doi.org/10.1109/TIA.2009.2036540
  7. L. Zheng, J. E. Fletcher, B. W. Williams, and X. He, "A Novel Direct Torque Control Scheme for a Sensorless Five-Phase Induction Motor Drive," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 503-513, Feb. 2011. https://doi.org/10.1109/TIE.2010.2047830
  8. T. H. Liu and H. H. Hsu, "Adaptive controller design for a synchronous reluctance motor drive system with direct torque control," IET Electr. Power Appl., vol. 1, no. 5, pp. 815-824, Sep. 2007. https://doi.org/10.1049/iet-epa:20070056
  9. S. B. Ozturk, W. C. Alexander and H. A. Toliyat, "Direct Torque Control of Four-Switch Brushless DC Motor With Non-Sinusoidal Back EMF," IEEE Trans. Power Electron., vol. 25, no. 2, pp. 263-271, Feb. 2010. https://doi.org/10.1109/TPEL.2009.2028888
  10. C. Patel, P. P. Rajeevan, A. Dey, R. Ramchand, K. Gopakumar, and M. P. Kazmierkowski, "Fast Direct Torque Control of an Open-End Induction Motor Drive Using 12-Sided Polygonal Voltage Space Vectors," IEEE Trans. Power Electron., vol. 27, no. 1, pp. 400-410, Jan. 2012. https://doi.org/10.1109/TPEL.2011.2159516
  11. Y. Wang and Z. Deng, "Improved Stator Flux Estimation Method for Direct Torque Linear Control of Parallel Hybrid Excitation Switched-Flux Generator," IEEE Trans. Energy Convers. , vol. 27, no. 3, pp. 747-756, Sep. 2012. https://doi.org/10.1109/TEC.2012.2200898
  12. L. Zhong, M. F. Rahman, W. Y. Hu, and K. W. Lim, "Analysis of direct torque control in permanent magnet synchronous motor drives," IEEE Trans. Power Electron., vol. 12, no. 3, pp. 528-536, May 1997. https://doi.org/10.1109/63.575680
  13. L. Zhong, M. F. Rahman, W. Y. Hu, K. W. Lim, and M. A. Rahman, "A direct torque controller for permanent magnet synchronous motor drives," IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 637-642, Sep. 1999. https://doi.org/10.1109/60.790928
  14. D. Casadei, G. Serra and A. Tani, "Implementation of a direct control algorithm for induction motors based on discrete space vector modulation," IEEE Trans. Power Electron., vol. 15, no. 4, pp. 769-777, Jul. 2000. https://doi.org/10.1109/63.849048
  15. Y. S. Lai, W. K. Wang and Yen-Chang Chen, "Novel switching techniques for reducing the speed ripple of AC drives with direct torque control," IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 768-775, Aug. 2004. https://doi.org/10.1109/TIE.2004.831720
  16. F. Khoucha, S. M. Lagoun, K. Marouani, A. Kheloui and M. E. H. Benbouzid, "Hybrid Cascaded HBridge Multilevel-Inverter Induction-Motor-Drive Direct Torque Control for Automotive Applications," IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 892-899, Mar. 2010. https://doi.org/10.1109/TIE.2009.2037105
  17. D. Casadei, G. Serra and A. Tani, "The use of matrix converters in direct torque control of induction machines," IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1057-1064, Dec. 2001. https://doi.org/10.1109/41.969384
  18. C. Xia, S. Wang, Z. Wang and T. Shi, "Direct Torque Control for VSI-PMSMs Using Four-Dimensional Switching-Table," IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5774-5785, Aug. 2016. https://doi.org/10.1109/TPEL.2015.2498207
  19. C. Xia, J. Zhao, Y. Yan and T. Shi, "A Novel Direct Torque Control of Matrix Converter-Fed PMSM Drives Using Duty Cycle Control for Torque Ripple Reduction," IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2700-2713, Jun. 2014. https://doi.org/10.1109/TIE.2013.2276039
  20. J. K. Kang and S. K. Sul, "New direct torque control of induction motor for minimum torque ripple and constant switching frequency," IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1076-1082, Sep./Oct. 1999. https://doi.org/10.1109/28.793368
  21. B. H. Kenny and R. D. Lorenz, "Stator- and rotor flux-based deadbeat direct torque control of induction machines," IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1093-1101, Jul./Aug. 2003. https://doi.org/10.1109/TIA.2003.813727
  22. T. G. Habetler, F. Profumo, M. Pastorelli, And L. M. Tolbert, "Direct Torque Control of Induction Machines Using Space Vector Modulation," IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1045-1051, Sep./Oct. 1992. https://doi.org/10.1109/28.158828
  23. M. Pacas and J. Weber, "Predictive direct torque control for the PM synchronous machine," IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1350-1356, Oct. 2005. https://doi.org/10.1109/TIE.2005.855662
  24. N. Feng, L. Kui and W. Yao, "Direct Torque Control for Permanent-Magnet Synchronous Machines Based on Duty Ratio Modulation," IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6160-6170, Oct. 2015. https://doi.org/10.1109/TIE.2015.2426678
  25. L. X. Tang, L. M. Zhong, M. F. Rahman, and Y. W. Hu, "A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency," IEEE Trans. Power Electron., vol. 19, no. 2, pp. 346-354, Mar. 2004. https://doi.org/10.1109/TPEL.2003.823170
  26. Z. Xu and M. F. Rahman, "Direct torque and flux regulation of an IPM synchronous motor drive using variable structure control approach," IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2487-2498, Nov. 2007. https://doi.org/10.1109/TPEL.2007.909208
  27. H. Zhu, X. Xiao and Y. Li, "Torque Ripple Reduction of the Torque Predictive Control Scheme for Permanent-Magnet Synchronous Motors," IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 871-877, Feb. 2012. https://doi.org/10.1109/TIE.2011.2157278
  28. Y. Zhang, J. Zhu, W. Xu, and Y. Guo, "A Simple Method to Reduce Torque Ripple in Direct Torque-Controlled Permanent-Magnet Synchronous Motor by Using Vectors With Variable Amplitude and Angle," IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2848-2859, Jul. 2011. https://doi.org/10.1109/TIE.2010.2076413
  29. R. Wu and G. R. Slemon, "A permanent magnet motor drive without a shaft sensor," IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 1005-1011, Sep./Oct. 1991. https://doi.org/10.1109/28.90359
  30. Z. Xu and M. F. Rahman, "An adaptive sliding stator flux observer for a direct-torque-controlled IPM synchronous motor drive," IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2398-2406, Oct. 2007. https://doi.org/10.1109/TIE.2007.900328
  31. G. H. B. Foo and M. F. Rahman, "Direct Torque Control of an IPM-Synchronous Motor Drive at Very Low Speed Using a Sliding-Mode Stator Flux Observer," IEEE Trans. Power Electron., vol. 25, no. 4, pp. 933-942, Apr. 2010. https://doi.org/10.1109/TPEL.2009.2036354
  32. Z. Xu and M. F. Rahman, "Comparison of a Sliding Observer and a Kalman Filter for Direct-Torque-Controlled IPM Synchronous Motor Drives," IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4179-4188, Nov. 2012. https://doi.org/10.1109/TIE.2012.2188252
  33. G. Foo, S. Sayeef and M. F. Rahman, "Low-Speed and Standstill Operation of a Sensorless Direct Torque and Flux Controlled IPM Synchronous Motor Drive," IEEE Trans. Energy Convers. , vol. 25, no. 1, pp. 25-33, Mar. 2010. https://doi.org/10.1109/TEC.2009.2025407
  34. W. Xu and R. D. Lorenz, "Reduced Parameter Sensitivity Stator Flux Linkage Observer in Deadbeat-Direct Torque and Flux Control for IPMSMs," IEEE Trans. Ind. Appl., vol. 50, no. 4, pp. 2626-2636, Jul./ Aug. 2014. https://doi.org/10.1109/TIA.2014.2298554
  35. J. S. Lee, C. Choi, J. Seok, and R. D. Lorenz, "Deadbeat-Direct Torque and Flux Control of Interior Permanent Magnet Synchronous Machines with Discrete Time Stator Current and Stator Flux Linkage Observer," IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1749-1758, Jul./Aug. 2011. https://doi.org/10.1109/TIA.2011.2154293
  36. Z. Chen, M. Tomita, S. Doki and S. Okuma, "An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288-295, Apr. 2003. https://doi.org/10.1109/TIE.2003.809391
  37. Katsuhiko Ogata, "Pole Placement and Observer Design", in Discrete-time Control Systems, 2th ed. China Machine Press, 2004, pp. 456-457.

Cited by

  1. A Parameter Identification Method Based on Forgetting Factor Dynamic Adjustment for PMSM Applied to the Rapid Control of Satellite Attitude vol.14, pp.1, 2019, https://doi.org/10.1007/s42835-018-00049-x