DOI QR코드

DOI QR Code

Implementation of Functional Blocks of Modular Toy for Creative Education

창의적 교육을 위한 모듈형 완구의 기능 블록 구현

  • Received : 2017.09.11
  • Accepted : 2017.10.20
  • Published : 2017.10.31

Abstract

Modular toys for creative education require functional blocks to create various types of movements. An active drive module and a lot of passive connection blocks are needed to express motion with combination. In this paper, we propose the design of modular toys to produce various creative movements and controller structure working with them. In order to facilitate the connection between the designed modules, a connection method and a suitable mechanism are suggested. We also dealt with the design of various types of sensor modules that can work in conjunction with modular toys. Using these toys, typical standard application form that can be imitated educationally is suggested and showed the usefulness of the modular toy by actually applying it with designed modules and components. The proposed method is applied to actual educational toys, and the operation is effectively performed by recording operation and playing repetitive operation.

창의적 교육을 위한 모듈형 완구는 다양한 형태의 움직임을 만들어 주는 기능 블럭이 요구된다. 우선 동작을 만들 수 있는 능동 구동 모듈이 필요하고 이와 결합하여 동작을 표현해 낼 수 있기 위한 수동 연결 블록이 다수 필요하다. 본 논문에서는 다양한 창의적 동작을 만들어 낼 수 있는 모듈형 완구에 대한 구성 요소의 설계와 이를 연결하여 동작 시킬 수 있는 제어기 구조를 제안 하였다. 설계된 모듈간의 연결을 원활하게 하기 위한 기구적인 연결 방법을 제시 하였고 이에 적합한 기구구조를 제안하였다. 아울러 모듈형 동작 완구와 연계 되어 동작할 수 있는 다양한 형태의 센서 모듈에 대한 설계를 다루었다. 이런 완구를 이용하여 교육적으로 모방할 수 있는 전형적인 표준 응용 형태를 제안하고 설계된 모듈과 구성 요소를 이용하여 실제로 적용하여 모듈형 완구의 유용성을 보였다. 제안된 방식은 실제 교육용 완구에 적용하여 동작을 기록하고 반복 동작을 수행하여 효과적으로 동작됨을 보였다.

Keywords

References

  1. P. Marshall, S. Price & Y. Rogers. (2003). Conceptualising tangibles to support learning. In Proceedings of the 2003 conference on Interaction design and children. New York : ACM.
  2. C. O'Malley & D. S. Fraser. (2005). Literature review in learning with tangible technologies. A NESTA Futurelab Research report. United Kingdom : Harbourside.
  3. A. Takacs, G. Eigner, L. Kovacs, I. J. Rudas & T. Haidegger. (2016). Teacher's Kit: Development, Usability, and Communities of Modular Robotic Kits for Classroom Education. IEEE Robotics & Automation Magazine, 23(2), 30-39. DOI: 10.1109/MRA.2016.2548754.
  4. A. J. Parkes, H. S. Raffle & H. Ishii. (2008). Topobo in the wild: longitudinal evaluations of educators appropriating a tangible interface. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York : ACM.
  5. M. Patrizia, M. Claudio, G. Leonardo & P. Alessandro. (2009). A robotic toy for children with special needs: From requirements to design. IEEE International Conference on Rehabilitation Robotics. USA : IEEE. DOI: 10.1109/ICORR.2009.5209500
  6. J. Nielsen, N. K. Baerendsen & C. Jessen. (2008). RoboMusicKids-music education with robotic building blocks. Second IEEE International Conference on Digital Games and Intelligent Toys Based Education. USA : IEEE. DOI: 10.1109/DIGITEL.2008.25
  7. V. O. Dzhenzher. (2014). Computer simulation at school scratch and programming language choosing criteria. IEEE International Conference on Global Engineering Education. USA : IEEE. DOI: 10.1109/EDUCON.2014.6826174.
  8. L. Presley, B. Carroll & R. Gorbet. (2016). It Lives! A STEAM-based in-class workshop for promotion of creative and innovation thinking. 2016 IEEE Integrated STEM Education Conference(ISEC). USA : IEEE. DOI: 10.1109/ISECon.2016.7457546
  9. M. Jeon et al. (2017). Robot Opera: A modularized afterschool program for STEAM education at local elementary school. 14th IEEE International Conference on Ubiquitous Robots and Ambient Intelligence. USA : IEEE. DOI: 10.1109/URAI.2017.7992869
  10. M. Pacheco, M. Moghadam, A. Magnusson, B. Silverman, H. H. Lund & D. J. Christensen. (2013). Fable: Design of a modular robotic playware platform. 2013 IEEE International Conference on Robotics and Automation . USA : IEEE. DOI: 10.1109/ICRA.2013.6630627.
  11. E. Schweikardt & M. D. Gross. (2008). Learning about complexity with modular robots. Second IEEE International Conference on Digital Games and Intelligent Toys Based Education. USA : IEEE. DOI: 10.1109/DIGITEL.2008.49.
  12. O. Shaer, M. S. Horn & R. J. Jacob. (2009). Tangible user interface laboratory: Teaching tangible interaction design in practice. AI EDAM, 23(3), 251-261. DOI:10.1017/S0890060409000225.
  13. J. K. Lee, B. H. Lee, J. T. Kim, J. Y. Park & J. S. Kong. (2017). Record and Replay Motion Implementation to Modular Toys using Two Potentiometers. Journal of Convergence for Information Technology, 7(2), 59-66. DOI: 10.22156/CS4SMB.2017.7.2.059
  14. H. K. Kim, J. Y. Jen, J. Y. Park, S. H. Yoou & S. S. Na. (2010). Noise reduction of a high-speed printing system using optimized gears based on Taguchi's method. Journal of mechanical science and technology, 24(12), 2383-2393. https://doi.org/10.1007/s12206-010-0911-5
  15. D. R. Houser & A. Luscher. (1997). Measurement and predictions of plastic gear transmission errors with comparison to the measured noise of plastic and steel gears. AGMA technical paper, 97FTM04.