DOI QR코드

DOI QR Code

Synchronization and Performance Evaluation of MIMO/F-OFDM Systems for 5G Mobile Communications

5세대 이동통신용 다중안테나/F-OFDM 시스템에서의 동기 방식과 성능 평가

  • An, Changyoung (Department of electronic engineering, Chungbuk National University) ;
  • Ryu, Heung-Gyoon (Department of electronic engineering, Chungbuk National University)
  • Received : 2016.10.10
  • Accepted : 2016.12.22
  • Published : 2017.01.31

Abstract

In this paper, we have designed MIMO system using F-OFDM modulation. And then, we have evaluated and analyzed synchronization performance of the system. In this paper we have considered Schmidl's method, Minn's method, and Park's method. As simulation results, Schmidl's method has wide plateau of timing metric and Park's method has impulse-shape timing metric. Also, we can confirm that timing metric characteristic of synchronization estimator can be degraded by adjusting filter length of F-OFDM system. Especially, we can confirm that timing metric of synchronization estimator is shifted according to filter length of MIMO system using F-OFDM modulation and this timing metric movement can be compensated by using designed filter length.

본 논문에서는 5세대 이동통신을 위한 새로운 변조 기술 중 하나인 F-OFDM 기술과 MIMO 기술을 결합한 시스템을 설계하며, 이 시스템에 다양한 동기화 기술들을 적용하고, 각 동기화 방법들의 동기화 성능을 비교 평가 및 분석을 수행한다. 본 논문에서 비교 평가 및 분석을 위해 Schmidl, Minn, Park의 방법을 고려하였으며, 시뮬레이션 결과를 통해 F-OFDM 변조에서 OOB 전력을 저감시키기 위해 필터길이를 확장할 경우 동기 추정기의 시간 메트릭이 일부 열화가 발생할 수 있음을 확인할 수 있었으며, 시간 메트릭의 Plateau의 경우 Schmidl, Minn, Park 순서로 좁은 특성을 보이는 것을 확인할 수 있다. 특히, F-OFDM 변조의 필터길이 만큼 시간 메트릭이 쉬프트 이동하며, 이는 필터 길이에 영향을 받으므로 송수신기에서 시스템 설계시 고려된 필터 길이를 이용하여 보상할 수 있음을 확인할 수 있다.

Keywords

References

  1. A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G mobile and wireless communications: the vision of the METIS project," IEEE Commun. Mag., vol. 52, no. 5, pp. 26-35, May 2014. https://doi.org/10.1109/MCOM.2014.6815890
  2. E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selen, and J. Skold, "5G wireless access: requirements and realization," IEEE Commun. Mag., vol. 52, no. 12, pp. 42-47, Dec. 2014. https://doi.org/10.1109/MCOM.2014.6979985
  3. G. Wunder, et al., "5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications," IEEE Commun. Mag., vol. 52, no. 2, pp. 97-105, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736749
  4. P. Banelli, et al., "Modulation formats and waveforms for the physical layer of 5G wireless networks: Who will be the heir of OFDM?," in arXiv:1407.5947, Jul. 2014.
  5. T. S. Rappaport, et al., "Millimeter wave mobile communications for 5G cellular: It will work!," in IEEE Access, vol. 1, pp. 335-349, 2013. https://doi.org/10.1109/ACCESS.2013.2260813
  6. G. Berardinelli, K. Pajukoski, E. Lahetkangas, R. Wichman, O. Tirkkonen, and P. Mogensen, "On the potential of OFDM enhancements as 5G waveforms," IEEE VTC Spring, pp. 1-5, Seoul, 2014.
  7. X. Cheng, Y. He, B. Ge, and C. He, "A filtered OFDM using FIR filter based on window function method," 2016 IEEE VTC Spring, pp. 1-5, Nanjing, 2016.
  8. T. M. Schmidl and D. C. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997. https://doi.org/10.1109/26.650240
  9. H. Minn, M. Zeng, and V. K. Bhargava, "On timing offset estimation for OFDM systems," IEEE Commun. Lett., vol. 4, no. 7, pp. 242-244, Jul. 2000. https://doi.org/10.1109/4234.852929
  10. B. Park, H. Choen, E. Ko, C. Kang, and D. Hong, "A novel timing estimation method for OFDM systems," IEEE Commun. Lett., vol. 7, no. 5, pp. 53-55, May 2003.

Cited by

  1. 양방향 통신 장치 제작 및 분석 vol.8, pp.2, 2017, https://doi.org/10.22156/cs4smb.2018.8.2.083