DOI QR코드

DOI QR Code

Design of a 28GHz 8-Directional Switched Beamforming Antenna System Utilizing Butler Matrix

버틀러 매트릭스 기반 28GHz 8-방향 스위칭 빔포밍 안테나 시스템 설계

  • Shin, Sungjin (Department of Wireless Communications Engineering, Kwangwoon University) ;
  • Shin, Hyunchol (Department of Wireless Communications Engineering, Kwangwoon University)
  • Received : 2016.09.13
  • Accepted : 2016.12.08
  • Published : 2017.01.25

Abstract

In this paper, an 8-direction switched beamforming antenna system at 28GHz frequency band is described for 5th generation wireless communication. This system is composed of an $8{\times}8$ Butler matrix and an 8-element patch array antenna. The antenna system switches beams in 8-direction in the wide range of ${\pm}40^{\circ}$. The antenna spacing is $0.65{\lambda}$ to achieve ${\pm}40^{\circ}$ steering range. Designed results show that the 8-direction beams are placed at ${\pm}6^{\circ}$, ${\pm}17^{\circ}$, ${\pm}28^{\circ}$, ${\pm}40^{\circ}$ offset from the center. Parasitic radiation effect from the large dimension Butler matrix need to be suppressed by employing a stripline structure.

본 논문에서는 밀리미터파 5세대 이동통신을 위한 28GHz 대역 8-방향 스위치 빔포밍 안테나 시스템을 설계하였다. 전체 시스템은 $8{\times}8$ 버틀러 매트릭스와 8 배열 안테나로 구성되어있다. $8{\times}8$ 버틀러 매트릭스의 입력 단을 스위칭 하여 얻은 8개의 출력을 배열 안테나에 인가하여 총 8 방향의 빔을 생성할 수 있다. 배열 안테나 입력의 위상 간격 변화에 따라 배열지수(Array Factor)를 계산하여 빔의 방향성을 계산할 수 있다. 5G 시스템 목표인 ${\pm}40^{\circ}$의 조향 범위를 만족시키기 위한 안테나 간격은 $0.65{\lambda}$이다. 빔 조향 시뮬레이션 결과 버틀러 매트릭스 입력단에 따라 ${\pm}6^{\circ}$, ${\pm}17^{\circ}$, ${\pm}28^{\circ}$, ${\pm}40^{\circ}$의 총 8개의 방사 방향을 갖으며, 시스템의 전체 사이즈는 $55.8{\times}51.1mm^2$이다. 또한, 마이크로스트립 선로에 의한 기생 방사 효과를 확인하여 스트립라인 구조의 버틀러 매트릭스로 구현하였다.

Keywords

References

  1. W. Roh, J. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, and K. Cheun, "Millimeter-wave beamforming as an enabling technology for 5G cellular communications", IEEE Communications Magazine, vol. 52, no. 2, pp. 106-113, Feb. 2014. https://doi.org/10.1109/MCOM.2014.6736750
  2. Z. Pi and F. Khan, "An introduction to millimeter-wave mobile broadband systems", IEEE Communications Magazine, vol. 49, no. 6, pp. 101-107, Jun. 2011. https://doi.org/10.1109/MCOM.2011.5783993
  3. H. Shin, "Overview of millimeter-wave beamforming technology development for 5G", Proc. of IEIE Summer Conference, pp. 2027-2028, Jun. 2014.
  4. I. Kim, C. Ahn and S. Oh "Design and implementation of beam steering system based on rotaman lens and its real-time display device of beam receiving" Journal of the Institute of Electronics and Information Engineering, vol. 53, no. 5, pp. 683-692, May. 2016.
  5. C. Chang, R. Lee and T. Shih, "Design of a beam switching/steering butler matrix for phased array system", IEEE Trans. Antennas Propag, vol. 58, no. 2, pp. 367-374, Dec. 2009. https://doi.org/10.1109/TAP.2009.2037693
  6. S. Park, S. Kim, J. Sohn, H. Shin, "Design of 2.4 GHz $4{\times}4$ array antenna system for switched beamforming", Proc. of IEIE Summer Conference, pp. 434-435, Jun. 2015.
  7. S. Park, S. Kim, J. Sohn, H. Shin, "Design of a 28 GHz switched beamforming antenna system based on $4{\times}4$ Butler matrix", Journal of the Korean Institute of Electromagnetic Engineering and Science, vol. 26, no. 10, pp. 876-884, Oct. 2015. https://doi.org/10.5515/KJKIEES.2015.26.10.876
  8. W. L. Stuzman and G. A. Thiele, Antenna Theory and Design, 3rd edition, John Wiley and Sons, 2012.
  9. G. Jain, R. Kumar and J. Ghosh, "Design of low sidelobe microstrip antenna array", IOSR Journal of Electronics and Communication Engineering, vol. 9, no. 3, pp. 57-60, May-Jun. 2014.
  10. M. Dessouky, H.Sharshar and Y. Albagory., "Efficient sidelobe reduction technique for small-sized concentric cirvular arrays", Progress In Electromagnetics Research, PIER 65, pp. 187-200, 2006. https://doi.org/10.2528/PIER06092503
  11. J. Coonrod and R. Corporation, "The effect of radiation losses on high frequency PCB performance", in Proc. IPC APEX EXPO Conference, Mar. 2014.