DOI QR코드

DOI QR Code

Mechanical analysis of surface-coated zircaloy cladding

  • Lee, Youho (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Jeong Ik (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • NO, Hee Cheon (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2015.11.10
  • Accepted : 2017.03.24
  • Published : 2017.08.25

Abstract

A structural model for stress distributions of coated Zircaloy subjected to realistic incore pressure difference, thermal expansion, irradiation-induced axial growth, and creep has been developed in this study. In normal operation, the structural integrity of coating layers is anticipated to be significantly challenged with increasing burnup. Strain mismatch between the zircaloy and the coated layer, due to their different irradiation-induced axial growth, and creep deformation are found to be the most dominant causes of stress. This study suggests that the compatibility of the high temperature irradiation-induced strains (axial growth and creep) between zircaloy and the coating layer and the capability to undergo plastic strain should be taken as key metrics, along with the traditional focus on chemical protectiveness.

Keywords

References

  1. T. Furuta, S. Kawasakim, M. Hashimoto, T. Otomo, Zircaloy-Clad fuel rod burst behavior under simulated loss-of-coolant condition in pressurized water reactors, J. Nucl. Sci. Technol. 15 (1978) 736-744. https://doi.org/10.1080/18811248.1978.9735581
  2. Y. Lee, T. McKrell, M.S. Kazimi, Safety of Light Water Reactor Fuel with Silicon Carbide Cladding, MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2013. MIT-ANP-TR-150.
  3. H.M. Chung, Fuel behavior under loss-of-coolant accident situations, Nucl. Eng. Technol. 37 (2005) 327-362.
  4. K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2014) 420-435. https://doi.org/10.1016/j.jnucmat.2013.06.041
  5. K. Barret, S. Bragg-Sitton, D. Galicki, Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study (INL/EXT-12-27090), Idaho National Laboratory, 2012.
  6. AREVA Federal Services, LLC, Interim Analysis Report for Enhanced Accident Tolerant Fuels (RPT-3009595-000), AREVA, 2013.
  7. L. Braase, S. Bragg-Sitton, Advanced Fuels Campaign Cladding & Coatings Meeting Summary, INL/EXT-13-28628, Idaho National Laboratory, 2013.
  8. Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accident-tolerant Fuel, Nuscl. Technol. 186 (2014) 295-304. https://doi.org/10.13182/NT13-89
  9. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, High-Temperature Oxidation Behavior of Cr-Coated Zirconium Alloy, Transaction of TopFuel (2013), Charlotte, North Carolina, September 15-19, 2013.
  10. A.M. Yacout, M. Pellin, M.C. Billone, Development and Testing of Nanolaminate Coatings for Conventional LWR Cladding, Transaction of TopFuel (2013), Charlotte, North Carolina, September 15-19, 2013.
  11. J.Y. Park, I.H. Kim, Y.I. Jung, H.G. Kim, D.J. Park, B.K. Choi, High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings, J. Nucl. Mater. 437 (2013) 75-80. https://doi.org/10.1016/j.jnucmat.2013.01.338
  12. F. Khatkhatay, L. Jiao, J. Jian, W. Zhang, Z. Jia, J. Gan, H. Zhang, X. Zhang, H. Wang, Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water, J. Nucl. Mater. 451 (2014) 346-351. https://doi.org/10.1016/j.jnucmat.2014.04.010
  13. S. Lee, C. Park, Y. Lim, H. Kwon, Influences of laser surface alloying with niobium (Nb) on the corrosion resistance of Zircaloy-4, J. Nucl. Mater. 321 (2003) 177-183. https://doi.org/10.1016/S0022-3115(03)00245-9
  14. Y. Al-Olayyan, G.E. Fuchs, R. Baney, J. Tulenko, The effect of Zircaloy-4 substrate surface condition on the adhesion strength and corrosion of SiC coatings, J. Nucl. Mater. 346 (2005) 109-119. https://doi.org/10.1016/j.jnucmat.2005.05.016
  15. U. Wiklund, P. Hedenqvist, S. Hogmark, B. Stridh, M. Arbell, Multilayer coatings as corrosion protection of Zircaloy, Surf. Coat. Technol. 86-87 (1996) 530-534. https://doi.org/10.1016/S0257-8972(96)03001-0
  16. W.G. Luscher, E.R. Gilbert, S.G. Pitman, E.F. Love Jr., Surface modification of Zircaloy-4 substrates with nickel zirconium intermetallics, J. Nucl. Mater. 433 (2013) 514-522. https://doi.org/10.1016/j.jnucmat.2012.05.039
  17. I. Idarraga-Trujillo, M. Le Flem, J. Brachet, M. Lesaux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of Coated Nuclear Fuel Cladding for LWRs with Increased Margins in LOCA and Beyond LOCA, Transaction of TopFuel (2013), Charlotte, North Carolina, September 15-19, 2013.
  18. I. Kim, F. Khatkhatay, L. Jiao, G. Swadener, J.I. Cole, J. Gan, H. Wang, TiN-based coatings on fuel cladding tubes for advanced nuclear reactors, J. Nucl. Mater. 429 (2012) 143-148. https://doi.org/10.1016/j.jnucmat.2012.05.001
  19. Y. Lee, M.S. Kazimi, A structural model for multi-layered ceramic cylinders and its application to silicon carbide cladding of light water reactor fuel, J. Nucl. Mater. 458 (2015) 87-105. https://doi.org/10.1016/j.jnucmat.2014.12.013
  20. Y. Lee, T.J. McKrell, M.S. Kazimi, Thermal shock fracture of silicon carbide and its application to LWR fuel cladding performance during reflood, Nucl. Eng. Technol. 45 (2013) 811-820. https://doi.org/10.5516/NET.02.2013.528
  21. Y. Lee, T.J. McKrell, C. Yue, M.S. Kazimi, Safety assessment of SiC cladding oxidation under loss-of-coolant accident conditions in light water reactors, Nucl. Technol. 2 (2013) 210-227.
  22. Y. Lee, H.S. Kim, H.C. No, Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS), Nucl. Eng. Des. 292 (2015) 1-16. https://doi.org/10.1016/j.nucengdes.2015.05.023
  23. D.M. Carpenter, G.E. Kohse, M.S. Kazimi, An Assessment of Silicon Carbide as a Cladding Material for Light Water Reactors, MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2010. MIT-NFC-TR-132.
  24. J.P. Dobisesky, E.E. Pilat, M.S. Kazimi, Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment, MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2011. MIT-ANPTR-136.
  25. D.A. Bloore, E.E. Pilat, M.S. Kazimi, Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels (MIT-ANP-TR-148), MIT Center for Advanced Nuclear Energy Systems, Cambridge, 2013.
  26. J.D. Stempien, D.M. Carpenter, G. Kohse, M.S. Kazimi, Behavior of Triplex Silicon Carbide Fuel Cladding Designs Tested Under Simulated PWR Conditions, MIT Center for Advanced Nuclear Energy Systems, 2011. Cambridge.
  27. K.A. Terrani, B.A. Pint, M.P. Chad, M.S. Chinthaka, L.L. Snead, Y. Katoh, Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc. 97 (2014) 2331-2352. https://doi.org/10.1111/jace.13094
  28. B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments, J. Nucl. Mater. 440 (2013) 420-427. https://doi.org/10.1016/j.jnucmat.2013.05.047
  29. M. Ben-Belgacem, V. Richet, K.A. Terrani, Y. Katoh, L.L. Snead, Thermo-mechanical analysis of LWR SiC/SiC composite cladding, J. Nucl. Mater. 447 (2014) 125-142. https://doi.org/10.1016/j.jnucmat.2014.01.006
  30. L.L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  31. L.L. Snead, Issues and Overview of SiC-based Fuel and Clad Technologies in Support of Accident Tolerant Fuel Development, SiC/Accident Tolerant Fuel (ATF) Meeting, NSE Department Seminar, MIT Department of Nuclear Science and Engineering, Cambridge, Massachusetts, US, 2013, May 1.
  32. L.L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, M. Sawan, Silicon carbide composites as fusion power reactor structural materials, J. Nucl. Mater. 417 (2011) 330-339. https://doi.org/10.1016/j.jnucmat.2011.03.005
  33. Y. Katoh, L.L. Snead, C.H. Henager Jr., T. Nozawa, T. Hinoki, A. Ivekovic, S. Novak, Current status and recent research achievements in SiC/SiC composites, J. Nucl. Mater. 455 (2014) 387-397. https://doi.org/10.1016/j.jnucmat.2014.06.003
  34. Y. Katoh, L.L. Snead, C.H. Henager Jr., A. Hasegawa, A. Kohyama, B. Riccardi, H. Hegeman, Current status and critical issues for development of SiC composites for fusion applications, J. Nucl. Mater. (2007) 659-671.
  35. Y. Katoh, L.L. Snead, T. Nozawa, S. Kondo, J.T. Busby, Thermophysical and mechanical properties of near-stoichiometric fiber CVI SiC/SiC composites after neutron irradiation at elevated temperatures, J. Nucl. Mater. 403 (2010) 48-61. https://doi.org/10.1016/j.jnucmat.2010.06.002
  36. Y. Katoh, T. Nozawa, L.L. Snead, K. Ozawa, T. Hiroyasu, Stability of SiC and its composites at high neutron fluence, J. Nucl. Mater. 417 (2011) 400-405. https://doi.org/10.1016/j.jnucmat.2010.12.088
  37. Y. Katoh, L.L. Snead, C.M. Parish, T. Hinoki, Observation and possible mechanism of irradiation induced creep in ceramics, J. Nucl. Mater. 434 (2013) 141-151. https://doi.org/10.1016/j.jnucmat.2012.11.035
  38. G. Newsome, L.L. Snead, T. Hinoki, Y. Katoh, D. Peters, Evaluation of neutron irradiated silicon carbide and silicon carbide composites, J. Nucl. Mater. 371 (2007) 76-89. https://doi.org/10.1016/j.jnucmat.2007.05.007
  39. Y. Katoh, K. Ozawa, C. Shih, T. Nozawa, R.J. Shinavski, A. Hasegawa, L.L. Snead, Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects, J. Nucl. Mater. 448 (2014) 448-476. https://doi.org/10.1016/j.jnucmat.2013.06.040
  40. 20 GWd SiC Clad Fuel Pin Examination. Report, ORNL/TM-2014/102, Oakridge National Laboratory (ORNL), 2014.
  41. K.A. Terrani, Y. Yang, Y.-J. Kim, R. Rebak, H.M. Meyer III, T.J. Gerczak, Hydrothermal corrosion of SiC in LWR coolant environments in the absence of irradiation, J. Nucl. Mater. 465 (2015) 488-498. https://doi.org/10.1016/j.jnucmat.2015.06.019
  42. X. Hu, K.A. Terrani, B.D. Wirth, L.L. Snead, Hydrogen permeation in FeCrAl alloys for LWR cladding application, J. Nucl. Mater. 461 (2015) 282-291. https://doi.org/10.1016/j.jnucmat.2015.02.040
  43. Personal correspondence, Center for Advanced Nuclear Energy Systems, Massachusetts Institute of Technology, Cambridge, U.S.A, 2013.
  44. R.V. Nieuwenhove, K. Daub, H. Nordin, Investigation of the Impact of Coatings on Corrosion and Hydrogen Uptake of Nuclear Components, Presentation slides, NUMAT (Nuclear Materials) Conference, Florida, October, 2014.
  45. T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure, J. Nucl. Mater. 427 (2012) 396-400. https://doi.org/10.1016/j.jnucmat.2012.05.007
  46. A.T. Nelson, E.S. Sooby, Y.-J. Kim, B. Cheng, S.A. Maloy, High temperature oxidation of molybdenum in water vapor environments, J. Nucl. Mater. 448 (2014) 441-447. https://doi.org/10.1016/j.jnucmat.2013.10.043
  47. S. Bragg-Sitton, Development of Advanced Accident-tolerant Fuels for Commercial LWRs, Nuclear News, March 2014, pp. 83-91.
  48. B. Cheng, J. Deshon, Molybdenum-Based Fuel Cladding for Improved Accident Tolerance, EPRI (Electric Power Research Institute), June 2015.
  49. J.H. Sung, T.H. Kim, S.S. Kim, Fretting damage of TiN coated zircaloy-4 tube, Wear 250 (2001) 658-664. https://doi.org/10.1016/S0043-1648(01)00674-3
  50. U. Holzwarth, H. Stamm, Mechanical and thermomechanical properties of commercially pure chromium and chromium alloys, J. Nucl. Mater. 300 (2002) 161-177. https://doi.org/10.1016/S0022-3115(01)00745-0
  51. O. Tabata, T. Tsuchiya, in: J.G. Korvink, Oliver Paul (Eds.), Chapter 2. Material Properties: Measurement and Data, MEMS a practical guide to design, analysis and applications, William Andrew, Inc, NY, USA, 2006.
  52. R.O. Ritchie, in: Failure of Silicon: Crack Formation and Propagation, Presentation slides, 13th Workshop on Crystalline Solar Cell Materials and Processes, August 2003. Vail, Colorado.
  53. K. Petersen, Silicon as a mechanical material, Proceedings of the IEEE 70 (1982) 420-457. https://doi.org/10.1109/PROC.1982.12331
  54. A. Masolin, P.-O. Bouchard, R. Martini, M. Bernacki, Thermo-mechanical and fracture properties in single-crystal silicon, J. Mater. Sci. 48 (2013) 979-988. https://doi.org/10.1007/s10853-012-6713-7
  55. Thermal Alloys Engineering, Chemical composition and Properties of FeCrAl Alloys. [Internet]. Available from: http://www.thermalloys.com/index.php/en/alloys/fecralalloys.html.
  56. KANTHAL. Datasheet for Kanthal A-1 (FeCrAl alloy). [Internet]. Available from: http://kanthal.com/en/products/material-datasheets/strip/kanthal-a-1/.
  57. The Engineering ToolBox, Young Modulus of Elasticity for Metals and Alloys. [Internet]. Available from: http://www.engineeringtoolbox.com/youngmodulus-d_773.html.
  58. R. Boyer, G. Welsch, E.W. Collings, Material Properties Handbook: Titanium Alloys, ASM International, OH, USA, 1994.
  59. B.A. Latella, B.K. Gan, K.E. Davies, D.R. McKenzie, D.G. McCulloch, Titanium nitride/vanadium nitride alloy coatings: mechanical properties and adhesion characteristics, Surf. Coat. Technol. 200 (2006) 3605-3611. https://doi.org/10.1016/j.surfcoat.2004.09.008
  60. T. Namazu, S. Inoue, H. Takemoto, K. Koterazawa, Mechanical properties of polycrystalline titanium nitride films measured by XRD tensile testing, IEEJ Trans. Sensors Micromachines 125 (2005) 374-379. https://doi.org/10.1541/ieejsmas.125.374
  61. S.H. Kim, H. Park, K.H. Lee, S.H. Jee, D.-J. Kim, Y.S. Yoon, H.B. Chae, Structure and mechanical properties of titanium nitride thin films grown by reactive pulsed laser deposition, J. Ceram. Process. Res. 10 (2009) 49-53.
  62. J.W. Hutchinson, Plasticity at the micron scale, Int. J. Solid. Struct. 37 (2000) 225-238. https://doi.org/10.1016/S0020-7683(99)00090-6
  63. FRAPCON-3.5, A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup (NUREG/CR-7022), Pacific Northwest National Laboratory, Richland, WA, USA, 2014.
  64. Material Property Correlations, Comparisons between FRAPCON-3.5, FRAPTRAN-1.5, and MATPRO (NUREG/CR-7024), Pacific Northwest National Laboratory, Richland, WA, USA, 2014.
  65. R.F. Barron, B.R. Barron, Design for Thermal Stresses, John Wiley & Sons, New Jersey, 2012.
  66. M.F. Ashby, D. Jones, Engineering Materials 1: An Introduction to Properties, Applications and Design, third ed., Elsevier Butterworth-Heinemann, Boston, 2005.

Cited by

  1. Accident tolerant fuel cladding development: Promise, status, and challenges vol.501, pp.None, 2017, https://doi.org/10.1016/j.jnucmat.2017.12.043
  2. Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors vol.517, pp.None, 2017, https://doi.org/10.1016/j.jnucmat.2019.02.018
  3. Cracking of Cr-coated accident-tolerant fuel during normal operation and under power-ramping conditions vol.353, pp.None, 2017, https://doi.org/10.1016/j.nucengdes.2019.110275
  4. Research and Development of Novel Materials for Accident Tolerant Fuel Cladding of Nuclear Reactors vol.2020, pp.4, 2020, https://doi.org/10.26565/2312-4334-2020-4-10
  5. Unveiling damage mechanisms of chromium-coated zirconium-based fuel claddings by coupling digital image correlation and acoustic emission vol.774, pp.None, 2020, https://doi.org/10.1016/j.msea.2019.138850
  6. Recent studies on potential accident-tolerant fuel-cladding systems in light water reactors vol.31, pp.3, 2017, https://doi.org/10.1007/s41365-020-0741-9
  7. Influence of Laser Energy Density on Interfacial Diffusion Bonding and Surface Density of Chromium Coating by Multi-Arc Ion Plating on Zirconium Alloy vol.10, pp.6, 2017, https://doi.org/10.3390/coatings10060565
  8. Application and Development Progress of Cr-Based Surface Coating in Nuclear Fuel Elements: II. Current Status and Shortcomings of Performance Studies vol.10, pp.9, 2017, https://doi.org/10.3390/coatings10090835
  9. Mechanical and chemical properties of PVD and cold spray Cr-coatings on Zircaloy-4 vol.541, pp.None, 2017, https://doi.org/10.1016/j.jnucmat.2020.152420
  10. Effects of Thermal Aging on the Mechanical Properties of FeCrAl-ODS Alloy Claddings vol.62, pp.8, 2017, https://doi.org/10.2320/matertrans.mt-m2021057
  11. Silicon carbide coatings on zirconium alloy for light water reactor fuel cladding studies vol.1989, pp.1, 2017, https://doi.org/10.1088/1742-6596/1989/1/012009
  12. Microstructural complexity and dimensional changes in heavily irradiated zirconium vol.5, pp.11, 2017, https://doi.org/10.1103/physrevmaterials.5.113604
  13. Sintered Silicon Carbide composites deposited on zirconium alloy substrates in air and Ar atmosphere - Part I: Evaluation of scratch adhesion and tribology properties vol.306, pp.None, 2017, https://doi.org/10.1016/j.matlet.2021.130963
  14. Thermomechanical analysis of a lead-cooled fast reactor with a fast-running model vol.30, pp.None, 2017, https://doi.org/10.1016/j.csite.2021.101694