DOI QR코드

DOI QR Code

Thermo-fluid Dynamic Analysis through a Numerical Simulation of Canister

수치 모사를 통한 사출관 내부의 열유동 해석

  • Received : 2016.12.02
  • Accepted : 2017.01.13
  • Published : 2017.02.01

Abstract

A thermo-fluid dynamic analysis was performed through the numerical simulation of a missile canister. Calculation was made in a fixed analytical volume and fully evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF(Volume Of Fluid) model were chosen and parametric study was performed with the change of coolant flow rate. It could be found that the pressure on the canister top nonlinearly increased with the increase of coolant flow rate. Temperature and coolant distribution were closely related to the flow behavior in canister. Temperature on the canister bottom indicated a decrease being proportional to coolant flow rate in early times but after a specific time, the temperature increased with the tendency being reversed. In addition, the early part of temperature showed a fluctuating phenomenon because of the overall circulatory flow of mixture gas.

본 연구에서는 유도탄 사출관 내부의 수치모사를 통해 이상 유동에 대한 열 유체역학적 분석을 수행하였다. 고정된 해석영역에서 계산이 진행되었고 증발이 완료된 물을 냉각제로 사용하였다. 고온의 공기와 냉각제간의 상호작용 및 유동장을 해석하기 위해, Realizable $k-{\varepsilon}$ 난류 모델과 VOF (Volume Of Fluid) 모델을 선정하고 냉각제 유량에 따른 수치 해석을 진행하였다. 해석결과, 사출관 상부 압력은 냉각제 유량에 따라 비선형적으로 증가하였다. 그리고 내부에서의 유동 진행 과정과 온도분포, 냉각제분포가 밀접한 연관이 있음을 확인하였다. 사출관 하부의 초기 온도는 냉각제량의 증가에 비례하여 감소하지만, 특정시간 이후 경향이 역전되면서 오히려 온도의 상승을 유발하였다. 또한, 혼합가스의 순환유동에 의해 초기의 온도변화가 요동하는 경향도 확인되었다.

Keywords

References

  1. Edquist, C.T. and Romine, G.L., "Canister Gas Dynamics of Gas Generator Launched Missiles," 16th Joint Propulsion Conference, Hartford, C.T., U.S.A., AIAA 1980-1186, Jun. 1980.
  2. Edquist, C.T., "Prediction of the Launch Pulse for Gas Generator Launched Missiles," 24th Joint Propulsion Conference, Boston, M.A., U.S.A., AIAA 1988-3290, Jun. 1988.
  3. Rui, S. and Xing, Y., "Comparative Studies of Interior Ballistic Performance among Several Missile Eject Power Systems," Journal of Beijing University of Aeronautics and Astronautics, Vol. 35, No. 6, pp. 766-770, 2009.
  4. Qi, Q., Chen, Q., Zhou, Y., Wang, H. and Zhou, H., "Submarine-Launched Cruise Misslie Ejecting Launch Simulation and Research," 2011 International Conference on Electronic & Mechnical Engineering and Information Technology, Harbin, Heilongjiang, China, pp. 4542-4545, Aug. 2011.
  5. Tang, Y., Xing, Y. and Zhang, C., "Working Process Simulation of Gas and Steam Launching System," Journal of Naval Aeronautical and Astronautical University, Vol. 24, Issue 4, pp. 431-434, 2009.
  6. Byun, J.R., "Analytical Study on the Launching System with gas Generator," Journal of the Korea Society of Propulsion Engineers, Vol. 5, No. 3, pp. 52-59, 2001.
  7. Baek, G.H. and Yim, Y.J., "Coolant Effect on Gas Generator Propellant," Journal of the Korea Society of Propulsion Engineers, Vol. 9, No. 2, pp. 1-8, 2005.
  8. ANSYS, Inc., ANSYS FLUENT 14.5 Theory Guide, 2012.