DOI QR코드

DOI QR Code

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup

강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도

  • Lee, Ji-Hyung (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Hong, Sung-Gul (Dept. of Architecture & Architectural Engineering, Seoul National University)
  • Received : 2016.09.13
  • Accepted : 2016.12.02
  • Published : 2017.02.28

Abstract

Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

강섬유 보강 초고성능 콘크리트(UHPFRC)는 높은 압축강도 뿐 아니라 강섬유 보강에 의한 뛰어난 응력분산효과로 인해 높은 인장강도를 가지며, 미세균열의 확장을 통해 균열 후에도 경화거동을 하여 구조부재가 안정적으로 외력에 저항하도록 한다. 본 연구에서는 UHPFRC 재료 인장강도를 정의함에 있어 노치가 있는 휨실험과 직접인장실험을 비교하여 실험법 및 결과 분석의 장단점을 알아보았다. I-형 보의 전단부재실험은 복부의 면내전단거동을 알아보기 위하여 전단 경간비, 유효높이, 재료인장강도를 변수로 계획하였다. 실험결과를 통해 전단보강근이 없는 UHPFRC I형 보의 균열발생 이후 전단거동의 응력 재분배효과를 정량적으로 판단하고, 균열 후 거동을 기존 전단 강도식이 잘 반영하고 있는지 검토하였다. 전단철근 보강이 없는 UHPFRC 전단부재의 경우 파괴모드는 사인장 파괴로 동일하였고, 이러한 파괴모드를 가지는 부재는 전단 경간비와 유효높이에 크게 영향을 받게 되어 부재 설계 시 이러한 변수에 대한 고려가 필요한 것으로 나타났다.

Keywords

References

  1. Toutlemonde, F., and Resplendino, J., "Designing and building with UHPFRC : State of the Art and Development", ISTE Ltd. UK. 2011, ISBN: 978-1-84821-271-8.
  2. Yang, I., Joh, C., Lee, J. W., and Kim B. S., "An Experimental Study on Shear Behavior of Steel Fiber-Reinforced Ultra-High Performance Concree Beams", Journal of Civil Engineering, Vol. 32, No. 1A, Jan. 2012, pp. 55-64.
  3. Voo, Y. L., Poon, W. K., and Foster, S. J., "Shear Strength of Steel Fiber-Reinforced Ultrahigh- Performance Concrete Beams without Stirrups", Journal of Structural Engineering, Vol. 136, No. 11, 2010, pp. 1393-1400. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
  4. Hegger, J., and Bertram, G., "Shear Carrying Capacity of Ultra-High Performance Concrete beams", Tailor Made Concrete Structures, CRC Press, 2008, pp. 341-347.
  5. Baby, F., Marchand, P., and Toutlemonde, F., "Shear Behavior of Ultrahigh Performance Fiber-Reinforced Concrete Beams. I: Experimental Investigation", Journal of Structural Engineering, Vol. 140, No. 5, 2014, 04013111. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000907
  6. Yang, I., Kim, K., and Joh, C, "Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending", Journal of the Korea Concrete Institute, Vol. 26, No. 6, 2014, pp. 771-778. https://doi.org/10.4334/JKCI.2014.26.6.771
  7. Redaelli, D., "Testing of Reinforced High Performance Fiber Concrete Members in Tension", proceedings of 6th International PhD Symposium in Civil Engineering, Zurich, 2006, pp. 1-8.
  8. Jungwirth, J., and Muttoni, A., "Structural Behavior of Tension Members in UHPC", Proceedings of the International Symposium on Ultra High Performance Concrete, Kassel, 2014, pp. 533-546.
  9. Casanova, P., and Rossi, P., "Analysis and Design of Steel Fiber-Reinforced Concrete Beams", ACI structural journal, Vol. 94, No. 5, 1997, pp. 595-602.
  10. Mansur, M., Ong, K., and Paramasivam, P., "Shear Strength of Fibrous Concrete Beams without Stirrups", Journal of Structural Engineering, Vol. 112, No. 9. 1986, pp. 2066-2079. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:9(2066)
  11. Ashour, S. A., Hasanain, G. S., and Wafa, F. F., "Shear Behavior of High-Strength Fiber Reinforced Concrete Beams", ACI Structural Journal, Vol. 89, No. 2. Mar., 1992, pp. 176-184.
  12. Association Francaise de Genie Civil (AFGC), "ltra High Performance Fiber-Reinforced Concretes Recommendations", revised edition. French Civil Engineering Association, Paris, 2013, pp.110-111.
  13. Naaman, A. E., and Reinhardt, H. W., "High Performance Fiber Reinforced Cement Composites-HPFRCC4", RILEM proceedings PRO30, RILEM publications, France, 2003. pp. 3-12.
  14. CEN, "EN 1992-1-1 Eurocode 2: Design of Concrete Structures - Part 1-1:General Rules and Rules for Buildings", European Committee for Standardization, Brussels, 2004, pp. 84-94.
  15. Walraven, J., Belletti, B., and Esposito, R., "Shear Capacity of Normal, Lightweight, and High-Strength Concrete Beams according to Model Code 2010. I:Experimental Results versus Analytical Model Results", Journal of Structural Engineering, Vol. 139, No. 9, 2013, pp. 1593-1599. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000742
  16. CEN, "EN 14651: Test method for metallic fibered concrete - Measuring the flexural tensile strength (limit of proportionality, residual)", European Committee for Standardization, Brussels, 2005.
  17. Japan Concrete Institute (JCI), "Method of test for fracture energy of concrete by use of notched beam", JCI-S-002-2003.
  18. Yang, I., Kim, K., and Joh, C, "Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams", Journal of the Korea Concrete Institute, Vol. 27, No. 3, 2015, pp. 280-287.
  19. Fib bulletin 65, "Model Code 2010", fib, Switzerland. ISBN: 978-2-88394-105-2.
  20. Wille, K., El-Tawil, S., and Naaman, A. E., "Properties of Strain Hardening Ultra High Performance Fiber Reinforced Concrete (UHP-FRC) Under Direct Tensile Loading", Cement and Concrete Composites, Vol. 48, 2014, pp. 53-66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
  21. KCI, "Design Guidelines for Ultra High Performance Concrete K-UHPC Structure", Korea Concrete Institute, 2012.
  22. Lee, J. Y., and Yoon, S. H., "Evaluation of the Minimum Shear Reinforcement Ratio of Reinforced Concrete Memebers", Journal of the Korea Concrete Institute, Vol. 16, No. 1, 2003, pp. 43-53.
  23. JSCE, "Design and Construction Guidelines for Ultra High-Performance Concrete", JSCE, Japan, 2004.
  24. Walraven, J. C., "High Performance Fiber Reinforced Concrete: Progress in Knowledge and Design Codes", Materials and Structures, Vol. 42, 2009, pp. 1247-1260. https://doi.org/10.1617/s11527-009-9538-3

Cited by

  1. On the Evolution of Close Triple Stars That Produce Type Ia Supernovae vol.511, pp.1, 1999, https://doi.org/10.1086/306672