DOI QR코드

DOI QR Code

Assessing the Altitudinal Potential Source Contribution Function of Aerosol Optical Depth in the West Coast of Korean Peninsula during the DRAGON-KORUS-AQ Campaign

DRAGON-KORUS-AQ 기간 중 서해안 지역 에어로졸 광학 두께 고도별 PSCF 분석

  • Oh, Sea-Ho (Department of Environmental Engineering, Mokpo National University) ;
  • Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University) ;
  • Shon, Zang-Ho (Department of Environmental Engineering, Dong-Eui University) ;
  • Bae, Min-Suk (Department of Environmental Engineering, Mokpo National University)
  • 오세호 (목포대학교 환경공학과) ;
  • 김준 (연세대학교 대기과학과) ;
  • 손장호 (동의대학교 환경공학과) ;
  • 배민석 (목포대학교 환경공학과)
  • Received : 2016.12.20
  • Accepted : 2017.01.23
  • Published : 2017.02.28

Abstract

The altitudinal potential source contribution function (PSCFa) method was developed by considering topography and height of back trajectories. The PSCFa calculated on the contributions of trans-boundary transport to the hourly mean concentrations of aerosol optical depth (AOD) of the Aerosol Robotic Network (AERONET) in the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) KORea-US Air Quality (KORUS-AQ) campaign from March 31 to July 1 in 2016. Eastern China ($33^{\circ}N{\sim}35^{\circ}N$ and $119^{\circ}E{\sim}121^{\circ}E$) can be the major source of trans-boundary pollution to the western area in South Korea resulted from PSCFa (0~700 m). In this study, AOD by Moderate Resolution Imaging Spectroradiometer (MODIS) was compared to verify the source regions. Regionally, the effects of the long-range transport of pollutants from the eastern China on air quality in south Korea have become more significant over this period.

Keywords

References

  1. Bae, M.S., J.J. Schwab, W.N. Chen, C.Y. Lin, O.V. Rattigan, and K.L. Demerjian (2011) Identifying pollutant source directions using multiple analysis methods at a rural location in New York, Atmospheric Environment, 45(15), 2531-2540. https://doi.org/10.1016/j.atmosenv.2011.02.020
  2. Bae, M.S., J.S. Shin, K.Y. Lee, K.H. Lee, and Y.J. Kim (2014) Long-range transport of biomass burning emissions based on organic molecular markers and carbonaceous thermal distribution, Science of the Total Environment, 466, 56-66.
  3. Barreto, A., E. Cuevas, M.J. Granados-Munoz, L. Alados-Arboledas, P.M. Romero, J. Grobner, N. Kouremeti, A.F. Almansa, T. Stone, C. Toledano, R. Roman, M. Sorokin, B. Holben, M. Canini, and M. Yela (2016) The new sun-sky-lunar Cimel CE318-T multiband photometer-a comprehensive performance evaluation, Atmospheric Measurement Techniques, 9(2), 631-654. https://doi.org/10.5194/amt-9-631-2016
  4. Bibi, H., K. Alam, F. Chishtie, S. Bibi, I. Shahid, and T. Blaschke (2015) Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data, Atmospheric Environment, 111, 113-126. https://doi.org/10.1016/j.atmosenv.2015.04.013
  5. Habib, G., C. Venkataraman, I. Chiapello, S. Ramachandran, O. Boucher, and M.S. Reddy (2006) Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: relationship to regional meteorology and emissions, Atmospheric Environment, 40(11), 1909-1921. https://doi.org/10.1016/j.atmosenv.2005.07.077
  6. Holben, B.N., T. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov (1998) AERONET-A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment, 66(1), 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  7. Hua, S., H. Tian, K. Wang, C. Zhu, J. Gao, Y. Ma, Y. Xue, Y. Wang, S. Duan, and J. Zhou (2016) Atmospheric emission inventory of hazardous air pollutants from China's cement plants: Temporal trends, spatial variation characteristics and scenario projections, Atmospheric Environment, 128, 1-9. https://doi.org/10.1016/j.atmosenv.2015.12.056
  8. Jeong, J.H., Z.H. Shon, M.S. Kang, S.K. Song, Y.K. Kim, J.S. Park, and H.J. Kim (2017) Comparison of source apportionment of PM2.5 using receptor models in the main hub port city of East Asia: Busan, Atmospheric Environment, 148, 115-127. https://doi.org/10.1016/j.atmosenv.2016.10.055
  9. Kabashnikov, V.P., A.P. Chaikovsky, T.L. Kucsera, and N.S. Metelskaya (2011) Estimated accuracy of three common trajectory statistical methods, Atmospheric Environment, 45(31), 5425-5430. https://doi.org/10.1016/j.atmosenv.2011.07.006
  10. Kahn, R.A., B.J. Gaitley, M.J. Garay, D.J. Diner, T.F. Eck, A. Smirnov, and B.N. Holben (2010) Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network, Journal of Geophysical Research: Atmospheres, 115(D23).
  11. Kim, B.G., Y.J. Kim, and S.H. Eun (2008) An analysis of aerosol optical properties around Korea using AERONET, Journal of Korean Society for Atmospheric Environment, 24(6), 629-640. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2008.24.6.629
  12. Kim, K.C., D.S. Lee, K.Y. Lee, K.H. Lee, and Y.M. Noh (2016a) Estimation of Surface-Level PM2.5 Concentration based on MODIS Aerosol Optical Depth Over Jeju, Korea, Korean Journal of Remote Sensing, 32(5), 413-421. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2016.32.5.2
  13. Kim, M., J. Kim, U. Jeong, W. Kim, H. Hong, B. Holben, T.F. Eck, J.H. Lim, C.K. Song, S. Lee, and C.Y. Chung (2016b) Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS), Atmospheric Chemistry and Physics, 16(3), 1789-1808. https://doi.org/10.5194/acp-16-1789-2016
  14. Kim, S.W., I.J. Choi, S.C. Yoon, and Y.M. Kim (2013) Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate, Atmosphere, 23(1), 85-92. (in Korean with English abstract) https://doi.org/10.14191/Atmos.2013.23.1.085
  15. Lee, H.J. and Y.S. Son (2016) Spatial Variability of AERONET Aerosol Optical Properties and Satellite Data in South Korea during NASA DRAGON-Asia Campaign, Environmental Science and Technology, 50(7), 3954-3964. https://doi.org/10.1021/acs.est.5b04831
  16. Lee, H.J., J.E. Kim, and Y.S. Chun (2013a) Aerosol Vertical Distribution Measured by LIDARs in Baengnyeongdo, Munsan, and Gunsan during 10-11 May 2010, Atmosphere, 23(4), 519-526. (in Korean with English abstract) https://doi.org/10.14191/Atmos.2013.23.4.519
  17. Lee, K.H. (2013b) Three Dimensional Monitoring of the Asian Dust by the COMS/GOCI and CALIPSO Satellites Observation Data, Journal of Korean Society for Atmospheric Environment, 29(2), 199-210. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2013.29.2.199
  18. Moody, J.L. and P.J. Samson (1989) The influence of atmospheric transport on precipitation chemistry at two sites in the midwestern United States, Atmospheric Environment, 23(10), 2117-2132. https://doi.org/10.1016/0004-6981(89)90173-X
  19. More, S., P.P. Kumar, P. Gupta, P.C.S. Devara, and G.R. Aher (2013) Comparison of aerosol products retrieved from AERONET, MICROTOPS and MODIS over a tropical urban city, Pune, India, Aerosol and Air Quality Research, 13(1), 107-121. https://doi.org/10.4209/aaqr.2012.04.0102
  20. Noh, Y.M., K.H. Lee, and H.L. Lee (2011) A retrieval of vertically-resolved Asian dust concentration from quartz channel measurements of Raman lidar, Journal of Korean Society for Atmospheric Environment, 27 (3), 326-336. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2011.27.3.326
  21. Omar, A.H., J.-G. Won, D.M. Winker, S.-C. Yoon, O. Dubovick, and M.P. McCormick (2005) Development of global aerosol models using cluster analysis of Aeronet Robotic Network (AERONET) measurements, Journal of Geophysical Research: atmospheres, 110, D10S14. https://doi.org/10.1029/2004JF000145
  22. Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill (2002) Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product, Reviews of Geophysics, 40(1), 2-1-2-31.
  23. Ramachandran, S. and S. Kedia (2013) Aerosol optical properties over South Asia from ground-based observations and remote sensing: a review, Climate, 1(3), 84-119. https://doi.org/10.3390/cli1030084
  24. Ramachandran, S., S. Ghosh, A. Verma, and P.K. Panigrahi (2013) Multiscale periodicities in aerosol optical depth over India, Environmental Research Letters, 8(1), 014034. https://doi.org/10.1088/1748-9326/8/1/014034
  25. Shin, S.K., D.H. Shin, K.H. Lee, and Y.M. Noh (2012) Classification of dust/non-dust particle from the Asian dust plumes and retrieval of microphysical properties using Raman Lidar System, Journal of Korean Society for Atmospheric Environment, 28(6), 688-696. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2012.28.6.688
  26. Stein, A.F., R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D. Cohen, and F. Ngan (2015) NOAA's HYSPLIT atmospheric transport and dispersion modeling system, Bulletin of the American Meteorological Society, 96(12), 2059-2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  27. Stohl, A. (1996) Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe, Atmospheric Environment, 30(4), 579-587. https://doi.org/10.1016/1352-2310(95)00314-2
  28. Tan, S.C., J. Li, H. Che, B. Chen, and H. Wang (2017) Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010, Atmospheric Environment, 148, 316-328. https://doi.org/10.1016/j.atmosenv.2016.10.054
  29. Tao, M., L. Chen, R. Li, L. Wang, J. Wang, Z. Wang, G. Tang, and J. Tao (2016) Spatial oscillation of the particle pollution in eastern China during winter: Implications for regional air quality and climate, Atmospheric Environment, 144, 100-110. https://doi.org/10.1016/j.atmosenv.2016.08.049
  30. Weiss-Penzias, P.S., M.S. Gustin, and S.N. Lyman (2011) Sources of gaseous oxidized mercury and mercury dry deposition at two southeastern U.S. sites, Atmospheric Environment, 45(27), 4569-4579. https://doi.org/10.1016/j.atmosenv.2011.05.069
  31. Zeng, Y. and P.K. Hopke (1989) A study of the sources of acid precipitation in Ontario, Canada, Atmospheric Environment, 23(7), 1499-1509. https://doi.org/10.1016/0004-6981(89)90409-5
  32. Zhou, L., P.K. Hopke, and W. Liu (2004) Comparison of two trajectory based models for locating particle sources for two rural New York sites, Atmospheric Environment, 38(13), 1955-1963. https://doi.org/10.1016/j.atmosenv.2003.12.034

Cited by

  1. Spacial Distribution of PM1.0 Major Compounds from Long Range Transport at the Baegryungdo Super Site: Relationship between PSCF and Cluster Analysis vol.33, pp.4, 2017, https://doi.org/10.5572/KOSAE.2017.33.4.411