DOI QR코드

DOI QR Code

Effects of Porous Microstructure on the Electrochemical Properties of Si-Ge-Al Base Anode Materials for Li-ion Rechargeable Batteries

리튬이차전지용 다공성 Si-Ge-Al계 음극활물질의 전기화학적 특성

  • Cho, Chung Rae (Department of Energy Fusion Technologies, Inje University) ;
  • Kim, Myeong Geun (Department of Nanoscience and Engineering, Inje University) ;
  • Sohn, Keun Yong (Department of Nanoscience and Engineering, Inje University) ;
  • Park, Won-Wook (Department of Nanoscience and Engineering, Inje University)
  • 조충래 (인제대학교 에너지융합학과) ;
  • 김명근 (인제대학교 나노융합공학부) ;
  • 손근용 (인제대학교 나노융합공학부) ;
  • 박원욱 (인제대학교 나노융합공학부)
  • Received : 2016.09.03
  • Accepted : 2017.02.09
  • Published : 2017.02.28

Abstract

Silicon alloys are considered promising anode active materials to replace Li-ion batteries by graphite powder, because they have a relatively high capacity of up to 4200 mAh/g, and are environmentally friendly and inexpensive ECO-materials. However, its poor charge/discharge properties, induced by cracking during cycles, constitute their most serious problem as anode electrode. In order to solve these problems, Si-Ge-Al alloys with porous structure are designed as anode alloy powders, to improve cycling stability. The alloys are melt-spun to obtain the rapidly solidified ribbons, and then ball-milled to make fine powders. The powders are etched using 1 M HCl solution, which gives the powders a porous structure by removing the element Al. Subsequently, in this study, the microstructures and the characteristics of the etched powders are evaluated for application as anode materials. As a result, the etched porous powder shows better electrochemical properties than as-milled Si-Ge-Al powder.

Keywords

References

  1. J. Wang, I. D. Raistrick and R. A. Huggins: J. Electrochem. Soc., 133 (1986) 457. https://doi.org/10.1149/1.2108601
  2. K. Peng, J. Jie, W. Zhang, S. T. Lee: Appl. Phys. Lett., 93 (2008) 033105. https://doi.org/10.1063/1.2929373
  3. Y. Kwon, M. K. Kim, Y. Kim, Y. Lee and J. P. Cho: Electrochem. Solide State Lett., 9 (2006) A34. https://doi.org/10.1149/1.2138447
  4. H. Wu, G. Zheng, N. Liu, T. J. Carney, Y. Yang and Y. Cui: Nano Lett., 12 (2012) 904. https://doi.org/10.1021/nl203967r
  5. C. K. Chan, H. Peng, G. Liu, K. McIlwrathet, X. F. Zhang, R. A. Huggins and Y. Cui: Nat. Nanotechnol., 3 (2007) 31.
  6. M. Ashuri, Q. HeandL. Shaw: Nanoscale, 8 (2016) 74. https://doi.org/10.1039/C5NR05116A
  7. S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria and C. Capiglia: J. Power Sources, 257 (2014) 421. https://doi.org/10.1016/j.jpowsour.2013.11.103
  8. T. H. Hwang, Y. M. Lee, B. S. Kong, J. S. Seo and J. W. Choi: Nano Lett., 12 (2012) 802. https://doi.org/10.1021/nl203817r
  9. T. D. Hatchart and J. R. Dahn: J. Electrochem. Soc., 151 (2004) A838. https://doi.org/10.1149/1.1739217
  10. B. M. Bang, H. Kim, J. P. Lee, J. Cho and S. Park: Energy Environ. Sci., 4 (2011) 3395. https://doi.org/10.1039/c1ee01898a
  11. H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang: Electrochem. Solid-State Lett., 2 (1999) 547. https://doi.org/10.1149/1.1390899
  12. T. Song, H. Cheng, H. Choi, J. H. Lee, H. Han, D. H. Lee, D. S. Yoo, M. S. Kwon, J. M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y. C. Chung, H. Kim, J. A. Rogers and U. Paik: ACS Nano., 6 (2011) 303.
  13. H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao and J. Liang: Adv. Mater., 19 (2007) 4067. https://doi.org/10.1002/adma.200700621
  14. J. Y. Park, M. Z Jung and J. D Lee: Appl. Chem. Eng., 26 (2015) 80. https://doi.org/10.14478/ace.2014.1119