DOI QR코드

DOI QR Code

Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production

  • Jimenez-Quero, A. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg) ;
  • Pollet, E. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg) ;
  • Zhao, M. (CAMBA/IPHC, UMR 7178, Faculte de Pharmacie, Universite de Strasbourg) ;
  • Marchioni, E. (CAMBA/IPHC, UMR 7178, Faculte de Pharmacie, Universite de Strasbourg) ;
  • Averous, L. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg) ;
  • Phalip, V. (BioTeam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg)
  • Received : 2016.07.22
  • Accepted : 2016.09.20
  • Published : 2017.01.28

Abstract

The production of high-value chemicals from natural resources as an alternative for petroleum-based products is currently expanding in parallel with biorefinery. The use of lignocellulosic biomass as raw material is promising to achieve economic and environmental sustainability. Filamentous fungi, particularly Aspergillus species, are already used industrially to produce organic acid as well as many enzymes. The production of lignocellulose-degrading enzymes opens the possibility for direct fungal fermentation towards organic acids such as itaconic acid (IA) and fumaric acid (FA). These acids have wide-range applications and potentially addressable markets as platform chemicals. However, current technologies for the production of these compounds are mostly based on submerged fermentation. This work showed the capacity of two Aspergillus species (A. terreus and A. oryzae) to yield both acids by solid-state fermentation and simultaneous saccharification and fermentation. FA was optimally produced at by A. oryzae in simultaneous saccharification and fermentation (0.54 mg/g wheat bran). The yield of 0.11 mg IA/g biomass by A. oryzae is the highest reported in the literature for simultaneous solid-state fermentation without sugar supplements.

Keywords

References

  1. Goldberg I, Rokem JS, Pines O. 2006. Organic acids: old metabolites, new themes. J. Chem. Technol. Biotechnol. 81: 1601-1611. https://doi.org/10.1002/jctb.1590
  2. Werpy T, Holladay J, White J. 2004. Top value added chemicals from biomass: I. results of screening for potential candidates from sugars and synthesis gas (No. 419907). DOE Scientific and Technical Information. US Department of Energy (DOE).
  3. Magnuson JK, Lasure LL. 2004. Organic acid production by filamentous fungi, pp. 307-340. In Tkacz JS, Lange L (eds.). Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine. Springer, New York.
  4. Okabe M, Lies D, Kanamasa S, Park EY. 2009. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84: 597-606. https://doi.org/10.1007/s00253-009-2132-3
  5. Willke T, Vorlop K-D. 2001. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56: 289-295. https://doi.org/10.1007/s002530100685
  6. Hevekerl A, Kuenz A, Vorlop K-D. 2014. Filamentous fungi in microtiter plates - an easy way to optimize itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 98: 6983-6989. https://doi.org/10.1007/s00253-014-5743-2
  7. Mondala AH. 2015. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects. J. Ind. Microbiol. Biotechnol. 42: 487-506. https://doi.org/10.1007/s10295-014-1575-4
  8. Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M. 2005. Green biorefineries: the green biorefinery concept - fundamentals and potential, pp. 253-294. In Kamm B, Gruber PR, Kamm M (eds.). Biorefineries - Industrial Processes and Products. Wiley-VCH Verlag GmbH.
  9. Kawaguchi H, Hasunuma T, Ogino C, Kondo A. 2016. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr. Opin. Biotechnol. 42: 30-39. https://doi.org/10.1016/j.copbio.2016.02.031
  10. Lucia LA, Argyropoulos DS, Adamopoulos L, Gaspar AR. 2006. Chemicals and energy from biomass. Can. J. Chem. 84: 960-970. https://doi.org/10.1139/v06-117
  11. Kamm B, Kamm M, Schmidt M, Hirth T, Schulze M. 2005. Lignocellulose-based chemical products and product family trees, pp. 97-149. In Kamm B, Gruber PR, Kamm M (eds.). Biorefineries - Industrial Processes and Products. Wiley-VCH Verlag GmbH.
  12. Menon V, Rao M. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38: 522-550. https://doi.org/10.1016/j.pecs.2012.02.002
  13. de Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65: 497-522. https://doi.org/10.1128/MMBR.65.4.497-522.2001
  14. Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M. 2007. Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour. Technol. 98: 3329-3337. https://doi.org/10.1016/j.biortech.2006.03.016
  15. El-Imam AMA, Kazeem MO, Odebisi MB, Oke MA, Abidoye AO. 2013. Production of itaconic acid from Jatropha curcas seed cake by Aspergillus terreus. Not. Sci. Biol. 5: 57-61. https://doi.org/10.15835/nsb518355
  16. Xu Q, Li S, Fu Y, Tai C, Huang H. 2010. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour. Technol. 101: 6262-6264. https://doi.org/10.1016/j.biortech.2010.02.086
  17. Prévot V, Lopez M, Copinet E, Duchiron F. 2013. Comparative performance of commercial and laboratory enzymatic complexes from submerged or solid-state fermentation in lignocellulosic biomass hydrolysis. Bioresour. Technol. 129: 690-693. https://doi.org/10.1016/j.biortech.2012.11.135
  18. Pandey A. 2001. Solid-State Fermentation in Biotechnology: Fundamentals and Applications. Asiatech Publishers, New Delhi.
  19. Holker U, Hofer M, Lenz J. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64: 175-186. https://doi.org/10.1007/s00253-003-1504-3
  20. Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ. 2016. Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour. Technol. 215: 334-345. https://doi.org/10.1016/j.biortech.2016.03.018
  21. Sorensen HR, Pedersen S, Jorgensen CT, Meyer AS. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant "minimal" enzyme cocktail containing ${\beta}$-xylosidase and novel endo-1,4-${\beta}$-xylanase and ${\alpha}$-L-arabinofuranosidase activities. Biotechnol. Prog. 23: 100-107. https://doi.org/10.1021/bp0601701
  22. Okuda J, Miwa I, Maeda K, Tokui K. 1977. Rapid and sensitive, colorimetric determination of the anomers of Dglucose with D-glucose oxidase, peroxidase, and mutarotase. Carbohydr. Res. 58: 267-270. https://doi.org/10.1016/S0008-6215(00)84353-0
  23. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  24. Jimenez-Quero A, Pollet E, Zhao M, Marchioni E, Averous L, Phalip V. 2016. Itaconic and fumaric acid production from biomass hydrolysates by Aspergillus strains. J. Microbiol. Biotechnol. 26: 1557-1565. https://doi.org/10.4014/jmb.1603.03073
  25. Miron J, Yosef E, Ben-Ghedalia D. 2001. Composition and in vitro digestibility of monosaccharide constituents of selected byproduct feeds. J. Agric. Food Chem. 49: 2322-2326. https://doi.org/10.1021/jf0008700
  26. Van Dyk JS, Pletschke BI. 2012. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes - factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480. https://doi.org/10.1016/j.biotechadv.2012.03.002
  27. Begum MF, Alimon AR. 2011. Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production. Electron. J. Biotechnol. 14. DOI: 10.2225/vol14-issue5-fulltext-3.
  28. Hendriks ATWM, Zeeman G. 2008. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10-18.
  29. Viktor MJ, Rose SH, van Zyl WH, Viljoen-Bloom M. 2013. Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases. Biotechnol. Biofuels 6: 167. https://doi.org/10.1186/1754-6834-6-167
  30. West TP. 2008. Fumaric acid production by Rhizopus oryzae on corn distillers' grains with solubles. Res. J. Microbiol. 3: 35-40. https://doi.org/10.3923/jm.2008.35.40
  31. te Biesebeke R, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, et al. 2002. Aspergillus oryzae in solid-state and submerged fermentations. Progress report on a multi-disciplinary project. FEMS Yeast Res. 2: 245-248.
  32. de Castro RJS, Sato HH. 2014. Production and biochemical characterization of protease from Aspergillus oryzae: an evaluation of the physical-chemical parameters using agroindustrial wastes as supports. Biocatal. Agric. Biotechnol. 3: 20-25.
  33. Cao N, Xia Y, Gong CS, Tsao GT. 1997. Production of 2,3-butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase. Appl. Biochem. Biotechnol. 63-65: 129-139. https://doi.org/10.1007/BF02920419

Cited by

  1. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology vol.11, pp.22, 2017, https://doi.org/10.1002/cssc.201801700
  2. Secondary metabolites of Antarctic fungi antagonistic to aquatic pathogenic bacteria vol.13, pp.1, 2017, https://doi.org/10.1515/biol-2018-0002
  3. Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity vol.28, pp.2, 2017, https://doi.org/10.4014/jmb.1709.09036
  4. Fumaric Acid Production: A Biorefinery Perspective vol.4, pp.2, 2017, https://doi.org/10.3390/fermentation4020033
  5. Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa vol.102, pp.22, 2017, https://doi.org/10.1007/s00253-018-9362-1
  6. Effective approach to organic acid production from agricultural kimchi cabbage waste and its potential application vol.13, pp.11, 2017, https://doi.org/10.1371/journal.pone.0207801
  7. Fathoming Aspergillus oryzae metabolomes in formulated growth matrices vol.39, pp.1, 2019, https://doi.org/10.1080/07388551.2018.1490246
  8. Carboxylic Acids Production via Electrochemical Depolymerization of Lignin vol.6, pp.5, 2017, https://doi.org/10.1002/celc.201801676
  9. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol vol.12, pp.None, 2019, https://doi.org/10.1186/s13068-019-1529-1
  10. Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in Aspergillus terreus Involved in Plant Biomass Degradation vol.8, pp.None, 2017, https://doi.org/10.3389/fbioe.2020.564527
  11. Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass vol.25, pp.5, 2017, https://doi.org/10.3390/molecules25051070
  12. Preparation of itaconic acid bio-based cross-linkers for hydrogels vol.58, pp.3, 2017, https://doi.org/10.1080/10601325.2020.1836492
  13. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach vol.13, pp.20, 2017, https://doi.org/10.3390/polym13203574
  14. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy vol.343, pp.None, 2017, https://doi.org/10.1016/j.biortech.2021.126151