DOI QR코드

DOI QR Code

Optimization of Medium for the Carotenoid Production by Rhodobacter sphaeroides PS-24 Using Response Surface Methodology

반응 표면 분석법을 사용한 Rhodobacter sphaeroides PS-24 유래 carotenoid 생산 배지 최적화

  • 봉기문 (전남생물산업진흥원 생물방제연구센터) ;
  • 김공민 (전남생물산업진흥원 생물방제연구센터) ;
  • 서민경 (전남생물산업진흥원 생물방제연구센터) ;
  • 한지희 (국립농업과학원 농업생물부 농업미생물과) ;
  • 박인철 (국립농업과학원 농업생물부 농업미생물과) ;
  • 이철원 (전남대학교 자연과학대학 화학과) ;
  • 김평일 (전남생물산업진흥원 생물방제연구센터)
  • Received : 2016.11.04
  • Accepted : 2016.12.26
  • Published : 2017.02.28

Abstract

Response Surface Methodology (RSM), which is combining with Plackett-Burman design and Box-Behnken experimental design, was applied to optimize the ratios of the nutrient components for carotenoid production by Rhodobacter sphaeroides PS-24 in liquid state fermentation. Nine nutrient ingredients containing yeast extract, sodium acetate, NaCl, $K_2HPO_4$, $MgSO_4$, mono-sodium glutamate, $Na_2CO_3$, $NH_4Cl$ and $CaCl_2$ were finally selected for optimizing the medium composition based on their statistical significance and positive effects on carotenoid yield. Box-Behnken design was employed for further optimization of the selected nutrient components in order to increase carotenoid production. Based on the Box-Behnken assay data, the secondary order coefficient model was set up to investigate the relationship between the carotenoid productivity and nutrient ingredients. The important factors having influence on optimal medium constituents for carotenoid production by Rhodobacter sphaeroides PS-24 were determined as follows: yeast extract 1.23 g, sodium acetate 1 g, $NH_4Cl$ 1.75 g, NaCl 2.5 g, $K_2HPO_4$ 2 g, $MgSO_4$ 1.0 g, mono-sodium glutamate 7.5 g, $Na_2CO_3$ 3.71 g, $NH_4Cl$ 3.5g, $CaCl_2$ 0.01 g, per liter. Maximum carotenoid yield of 18.11 mg/L was measured by confirmatory experiment in liquid culture using 500 L fermenter.

본 연구를 통해 논, 시설재배 밭 토양, 쓰레기장, 하천 및 호수의 퇴적 토양 등 22개소에서 분리한 총 6종의 광합성세균 중 호기 암 배양이 가능한 Rhodobacter sphaeroides PS-24를 분리하였다. 형태학적 특징으로는 그람음성의 막대모양으로, 운동성이 있었다. 분리균주의 16S rRNA 염기서열을 분석한 결과 Rhodobacter sphaeroides ATH2.4.1과 99%의 상동성을 나타내었으며, 본 연구에서 Rhodobacter spharoides PS-24로 명명하여 연구를 수행하였다. 선별균주를 modifed Van niel's yeast 배지에서 배양 후 생성된 carotenoid를 추출한 결과 $12.03{\pm}0.15mg/L$의 함량이 측정되었으며, 반응표면분석법 중 Plackett burman 분석방법과 Box-Behnken 분석방법을 통해 carotenoid 생산에 영향을 미치는 요인을 분석하고 농도를 최적화하였다. 분석결과 각각의 독립변수 yeast extract -0.4144 (1.23 g/L), $Na_2CO_3$ 0.8541 (3.71 g/L)와 $MgSO_4$ 1.00 (1.00 g/L)의 농도를 선정하였으며, 이를 바탕으로 배지 조성을 최적화한 결과 yeast extract 1.23 g, sodium acetate 1 g, $NH_4Cl$ 1.75 g, NaCl 2.5 g, $K_2HPO_4$ 2 g, $MgSO_4$ 1.0 g, mono-sodium glutamate 7.5 g, $Na_2CO_3$ 3.71 g, $NH_4Cl$ 3.5 g, $CaCl_2$ 0.01 g/ liter로 선정하였다. 최적배지를 대상으로 5 L, 50 L, 500 L scale-up을 진행한 결과 최종 carotenoid는 각각 17.98 mg/L, 18.03 mg/L, 18.11 mg/L로 조사되었다. 최적배지의 경우 modified Van niel's yeast 배지보다 약 1.5배 많은 carotenoid를 생산하였으며, 대량배양을 통한 scale-up 과정 시 carotenoid의 생산량은 크게 변화하지 않는 것으로 조사되었다. 따라서 본 연구를 바탕으로 산업적으로 다양하게 사용되고 있는 carotenoid를 생산하는 광합성세균 Rhodobacter spharoides PS-24를 개발하였으며, 본 연구를 바탕으로 유기농축산에 사용이 가능한 기능성 미생물제제를 개발하고자 한다.

Keywords

References

  1. Armstrong, G. A., M. Alberti, F. Leach, and J. E. Hearst. 1989. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol. Gen Genet. 216: 254-68. https://doi.org/10.1007/BF00334364
  2. Armstrong, G. A. 1997. Genetics of eubacterial carotenoid biosynthesis: a colorfultale. Annu Rev. Microbiol. 51: 29-59.
  3. Bartley, G. E. and P. A. Scolnik. 1989. Carotenoid biosynthesis in photosynthetic bacteria. J. biol. Chem. 267: 13109-13113.
  4. Biebl, H. and N. P. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed culture with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9-16. https://doi.org/10.1007/BF00689344
  5. Chen, D., Y. Han, and Z. Gu, 2006. Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochemistry. 41(8): 1773-1778. https://doi.org/10.1016/j.procbio.2006.03.023
  6. Gu, Z., D. Chen, Y. Han, Z. Chen, and F. Gu. 2008. Optimization of carotenoids extraction from Rhodobacter sphaeroides. Food Science and Technology. 41(6): 1082-1088.
  7. Hong, S. P., M. H. Kim, and J. K. Hwang. 1998. Biological Functions and Production Technology of Carotenoids. J. Korean Soc. Food Sci. Nutr. 27(6): 1297-1306
  8. Jeong, Y. S., J. W. Kim, E. S. Lee, N. Y. Gil, S. S. Kim, and S. T. Hong. 2014. Optimization of alkali extraction for preparing oat protein concentrates from oat groat by response surface methodology. J. Kor. Soc. Food Sci. Nutr. 43: 1462-1466. https://doi.org/10.3746/jkfn.2014.43.9.1462
  9. Joshi, S., S. Yadav, A. Nerurkar, and A. J. Desai. 2007. Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J. Microbiol. Biotechnol. 17: 313-319.
  10. Klaui, H. 1982. Industrial and commercial uses of carotenoids, In Britton G and goodwin TW (ed.), Carotenoid chemistry and biochemistry. Pergamon Press, Inc., Oxford, England. pp. 309-328
  11. Nells, H. J. 1991. Microbial sources of carotenoid pigments used in foods feeds, Journal of Applied Bacteriology. 70: 181 https://doi.org/10.1111/j.1365-2672.1991.tb02922.x
  12. Pierre, A. 1997. Food carotenoids and cancer prevention: An overview of current resarch. Trends in Food Sci. Tech. 8: 406 https://doi.org/10.1016/S0924-2244(97)01092-3
  13. Plackett, R. L. and J. P. Burman. 1946. The design of optimum multifactorial experiments. Biometrika 33: 305-325. https://doi.org/10.1093/biomet/33.4.305
  14. Qasim, K. B., S. Vikram, and G. Rani. 2003. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem. 39: 203-209. https://doi.org/10.1016/S0032-9592(03)00064-5
  15. Sung, H. Y. 2004. Isolation and identification of novel bacterium producing carotenoid and cloning of carotenoid gene clusters from Jeju marine environment. MS. Thesis, Jeju National University, Jeju, Korea.
  16. Van Niel, C. B. 1944. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriological Reviews 8: 1.
  17. Vos, P., G. Garrity, D. Jones, N. R. Krieg, W. Ludwig, W. Rainey, and Whitman (eds). 2011. Bergey's Manual of Systematic Bacteriology: Volume 3: The Firmicutes. Springer Science & Business Media, USA.
  18. Wang, C. W., M. K. Oh, J. C. Liao. 1999. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol Bioeng. 20; 62(2): 235-241. https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<235::AID-BIT14>3.0.CO;2-U