DOI QR코드

DOI QR Code

Survival assays using Caenorhabditis elegans

  • Park, Hae-Eun H. (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Jung, Yoonji (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Seung-Jae V. (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2017.02.06
  • Accepted : 2017.02.23
  • Published : 2017.02.28

Abstract

Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans.

Keywords

References

  1. Aitlhadj, L., and Sturzenbaum, S.R. (2010). The use of FUdR can cause prolonged longevity in mutant nematodes. Mech. Ageing Dev. 131, 364-365. https://doi.org/10.1016/j.mad.2010.03.002
  2. Alspaugh, J.A. (2015). Virulence mechanisms and Cryptococcus neoformans pathogenesis. Fungal Genet. Biol. 78, 55-58. https://doi.org/10.1016/j.fgb.2014.09.004
  3. Altintas, O., Park, S., and Lee, S.J. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 49, 81-92. https://doi.org/10.5483/BMBRep.2016.49.2.261
  4. Amrit, F.R., Ratnappan, R., Keith, S.A., and Ghazi, A. (2014). The C. elegans lifespan assay toolkit. Methods 68, 465-475. https://doi.org/10.1016/j.ymeth.2014.04.002
  5. Barsyte, D., Lovejoy, D.A., and Lithgow, G.J. (2001). Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. FASEB J. 15, 627-634. https://doi.org/10.1096/fj.99-0966com
  6. Beanan, M.J., and Strome, S. (1992). Characterization of a germ-line proliferation mutation in C. elegans. Development 116, 755-766.
  7. Cabreiro, F., Au, C., Leung, K.Y., Vergara-Irigaray, N., Cocheme, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D., and Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228-239. https://doi.org/10.1016/j.cell.2013.02.035
  8. Choe, K.P., and Strange, K. (2007). Molecular and genetic characterization of osmosensing and signal transduction in the nematode Caenorhabditis elegans. FEBS J. 274, 5782-5789. https://doi.org/10.1111/j.1742-4658.2007.06098.x
  9. Cleland, W.W. (1964). DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry 3, 480-482. https://doi.org/10.1021/bi00892a002
  10. Corsi, A.K., Wightman, B., and Chalfie, M. (2015). A transparent window into biology: a primer on Caenorhabditis elegans. Worm-Book, 1-31.
  11. Darby, C. (2005). Interactions with microbial pathogens. WormBook, 1-15.
  12. Doonan, R., McElwee, J.J., Matthijssens, F., Walker, G.A., Houthoofd, K., Back, P., Matscheski, A., Vanfleteren, J.R., and Gems, D. (2008). Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev. 22, 3236-3241. https://doi.org/10.1101/gad.504808
  13. Ewbank, J.J. (2006). Signaling in the immune response. WormBook, 1-12.
  14. Ewbank, J.J., and Pujol, N. (2016). Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr. Opin. Immunol 38, 1-7. https://doi.org/10.1016/j.coi.2015.09.005
  15. Felix, M.A., Ashe, A., Piffaretti, J., Wu, G., Nuez, I., Belicard, T., Jiang, Y., Zhao, G., Franz, C.J., Goldstein, L.D., et al. (2011). Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 9, e1000586. https://doi.org/10.1371/journal.pbio.1000586
  16. Fisher, R.A. (1990). Statistical methods, experimental design, and scientific inference (Oxford Univ. Press).
  17. Ford, S.A., Kao, D., Williams, D., and King, K.C. (2016). Microbemediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430. https://doi.org/10.1038/ncomms13430
  18. Franz, C.J., Zhao, G., Felix, M.A., and Wang, D. (2012). Complete genome sequence of Le Blanc virus, a third Caenorhabditis nematode-infecting virus. J. Virol. 86, 11940. https://doi.org/10.1128/JVI.02025-12
  19. Freedman, J.H., Slice, L.W., Dixon, D., Fire, A., and Rubin, C.S. (1993). The novel metallothionein genes of Caenorhabditis elegans. Structural organization and inducible, cell-specific expression. J. Biol. Chem. 268, 2554-2564.
  20. Garigan, D., Hsu, A.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112.
  21. Gems, D., and Riddle, D.L. (1996). Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature 379, 723-725. https://doi.org/10.1038/379723a0
  22. Gill, M.S., Olsen, A., Sampayo, J.N., and Lithgow, G.J. (2003). An automated high-throughput assay for survival of the nematode Caenorhabditis elegans. Free Radic. Biol. Med. 35, 558-565. https://doi.org/10.1016/S0891-5849(03)00328-9
  23. Greer, E.L., Maures, T.J., Ucar, D., Hauswirth, A.G., Mancini, E., Lim, J.P., Benayoun, B.A., Shi, Y., and Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365-371. https://doi.org/10.1038/nature10572
  24. Hall, J., Haas, K.L., and Freedman, J.H. (2012). Role of MTL-1, MTL-2, and CDR-1 in mediating cadmium sensitivity in Caenorhabditis elegans. Toxicol. Sci. 128, 418-426. https://doi.org/10.1093/toxsci/kfs166
  25. Han, S.K., Lee, D., Lee, H., Kim, D., Son, H.G., Yang, J.S., Lee, S.V., and Kim, S. (2016). OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7, 56147-56152. https://doi.org/10.18632/oncotarget.11269
  26. Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M., Brown, P.A., Listner, K.M., Sakano, Y., Paupard, M.C., Hall, D.H., and Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814. https://doi.org/10.1038/nature01135
  27. Hodgkin, J., and Partridge, F.A. (2008). Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol. 6, 2634-2637.
  28. Hwang, A.B., and Lee, S.J. (2011). Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 3, 304-310.
  29. Hwang, A.B., Jeong, D.E., and Lee, S.J. (2012). Mitochondria and organismal longevity. Curr. Genomics 13, 519-532. https://doi.org/10.2174/138920212803251427
  30. Hwang, A.B., Ryu, E.A., Artan, M., Chang, H.W., Kabir, M.H., Nam, H.J., Lee, D., Yang, J.S., Kim, S., Mair, W.B., et al. (2014). Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 111, E4458-4467. https://doi.org/10.1073/pnas.1411199111
  31. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., and Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7, 60-72. https://doi.org/10.2478/intox-2014-0009
  32. Jiang, B., Ren, C., Li, Y., Lu, Y., Li, W., Wu, Y., Gao, Y., Ratcliffe, P.J., Liu, H., and Zhang, C. (2011). Sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in Caenorhabditis elegans. J. Biol. Inorg. Chem. 16, 267-274. https://doi.org/10.1007/s00775-010-0723-1
  33. Kaplan, E.L., and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Am. Statistical Association 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
  34. Keith, S.A., Amrit, F.R., Ratnappan, R., and Ghazi, A. (2014). The C. elegans healthspan and stress-resistance assay toolkit. Methods 68, 476-486. https://doi.org/10.1016/j.ymeth.2014.04.003
  35. Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. https://doi.org/10.1038/nature08980
  36. Kim, D.H., and Ausubel, F.M. (2005). Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr. Opin. Immunol. 17, 4-10. https://doi.org/10.1016/j.coi.2004.11.007
  37. Kim, D.H., and Ewbank, J.J. (2015). Signaling in the innate immune response. WormBook, 1-51.
  38. Kirienko, N.V., Kirienko, D.R., Larkins-Ford, J., Wahlby, C., Ruvkun, G., and Ausubel, F.M. (2013). Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13, 406-416. https://doi.org/10.1016/j.chom.2013.03.003
  39. Kirienko, N.V., Cezairliyan, B.O., Ausubel, F.M., and Powell, J.R. (2014). Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol. Biol. 1149, 653-669.
  40. Kourtis, N., Nikoletopoulou, V., and Tavernarakis, N. (2012). Small heatshock proteins protect from heat-stroke-associated neurodegeneration. Nature 490, 213-218. https://doi.org/10.1038/nature11417
  41. Kuo, S.C., and Lampen, J.O. (1974). Tunicamycin--an inhibitor of yeast glycoprotein synthesis. Biochem. Biophys. Res. Commun. 58, 287-295. https://doi.org/10.1016/0006-291X(74)90925-5
  42. Labbadia, J., and Morimoto, R.I. (2015). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435-464. https://doi.org/10.1146/annurev-biochem-060614-033955
  43. Lamitina, T., Huang, C.G., and Strange, K. (2006). Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc. Natl. Acad. Sci. USA 103, 12173-12178. https://doi.org/10.1073/pnas.0602987103
  44. Lee, S.J., Murphy, C.T., and Kenyon, C. (2009). Glucose shortens the life span of C. elegans by downregulating DAF-16/FOXO activity and aquaporin gene expression. Cell Metab. 10, 379-391. https://doi.org/10.1016/j.cmet.2009.10.003
  45. Lee, S.J., Hwang, A.B., and Kenyon, C. (2010). Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr. Biol. 20, 2131-2136. https://doi.org/10.1016/j.cub.2010.10.057
  46. Lee, Y., An, S.W.A., Artan, M., Seo, M., Hwang, A.B., Jeong, D.-E., Son, H.G., Hwang, W., Lee, D., and Seo, K., et al. (2015). Genes and Pathways That Influence Longevity in Caenorhabditis elegans. In Aging Mechanisms (Springer), pp. 123-169.
  47. Lithgow, G.J., White, T.M., Hinerfeld, D.A., and Johnson, T.E. (1994). Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J. Gerontol. 49, B270-276. https://doi.org/10.1093/geronj/49.6.B270
  48. Lu, N., and Goetsch, K. (1993). Carbohydrate requirement of Caenorhabditis elegans and the final development of a chemically defined medium. Nematologica 39, 303-311. https://doi.org/10.1163/187529293X00259
  49. Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163-170.
  50. Mathew, M.D., Mathew, N.D., and Ebert, P.R. (2012). WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans. PLoS One 7, e33483. https://doi.org/10.1371/journal.pone.0033483
  51. Murakami, S., and Johnson, T.E. (1996). A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143, 1207-1218.
  52. Murray, P., Hayward, S.A., Govan, G.G., Gracey, A.Y., and Cossins, A.R. (2007). An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 104, 5489-5494. https://doi.org/10.1073/pnas.0609590104
  53. Mylonakis, E., Ausubel, F.M., Perfect, J.R., Heitman, J., and Calderwood, S.B. (2002). Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99, 15675-15680. https://doi.org/10.1073/pnas.232568599
  54. Mylonakis, E., Casadevall, A., and Ausubel, F.M. (2007). Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi. PLoS Pathog. 3, e101. https://doi.org/10.1371/journal.ppat.0030101
  55. O'Neil, N., and Rose, A. (2006). DNA repair. WormBook, 1-12.
  56. Oliveira, R.P., Porter Abate, J., Dilks, K., Landis, J., Ashraf, J., Murphy, C.T., and Blackwell, T.K. (2009). Condition-adapted stress and longevity gene regulation by Caenorhabditis elegans SKN-1/Nrf. Aging Cell 8, 524-541. https://doi.org/10.1111/j.1474-9726.2009.00501.x
  57. Papenfort, K., and Bassler, B.L. (2016). Quorum sensing signalresponse systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14, 576-588. https://doi.org/10.1038/nrmicro.2016.89
  58. Powell-Coffman, J.A. (2010). Hypoxia signaling and resistance in C. elegans. Trends Endocrinol. Metab. 21, 435-440. https://doi.org/10.1016/j.tem.2010.02.006
  59. Pulak, R. (2006). Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol. Biol. 351, 275-286.
  60. Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W.S., Kerk, S.Y., Hannon, G.J., and Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277-287. https://doi.org/10.1016/j.cell.2014.06.020
  61. Reddy, K.C., Andersen, E.C., Kruglyak, L., and Kim, D.H. (2009). A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323, 382-384. https://doi.org/10.1126/science.1166527
  62. Rodriguez, M., Snoek, L.B., De Bono, M., and Kammenga, J.E. (2013). Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends Genet. 29, 367-374. https://doi.org/10.1016/j.tig.2013.01.010
  63. Rohlfing, A.K., Miteva, Y., Hannenhalli, S., and Lamitina, T. (2010). Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans. PloS one 5, e9010. https://doi.org/10.1371/journal.pone.0009010
  64. Rooney, J.P., Luz, A.L., Gonzalez-Hunt, C.P., Bodhicharla, R., Ryde, I.T., Anbalagan, C., and Meyer, J.N. (2014). Effects of 5'-fluoro-2-deoxyuridine on mitochondrial biology in Caenorhabditis elegans. Exp. Gerontol. 56, 69-76. https://doi.org/10.1016/j.exger.2014.03.021
  65. Samuelson, A.V., Carr, C.E., and Ruvkun, G. (2007). Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev. 21, 2976-2994. https://doi.org/10.1101/gad.1588907
  66. Savory, F.R., Sait, S.M., and Hope, I.A. (2011). DAF-16 and Δ9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants. PLoS One 6, e24550. https://doi.org/10.1371/journal.pone.0024550
  67. Scott, B.A., Avidan, M.S., and Crowder, C.M. (2002). Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2. Science 296, 2388-2391. https://doi.org/10.1126/science.1072302
  68. Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K., et al. (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893-903. https://doi.org/10.1016/S0092-8674(01)00612-2
  69. Sies, H. (1985). Oxidative stress: introductory remarks. Oxidative Stress, 1-8.
  70. Sonoda, S., Ohta, A., Maruo, A., Ujisawa, T., and Kuhara, A. (2016). Sperm affects head sensory neuron in temperature tolerance of Caenorhabditis elegans. Cell Rep. 16, 56-65. https://doi.org/10.1016/j.celrep.2016.05.078
  71. Stiernagle, T. (2006). Maintenance of C. elegans. WormBook, 1-11.
  72. Stroustrup, N., Ulmschneider, B.E., Nash, Z.M., Lopez-Moyado, I.F., Apfeld, J., and Fontana, W. (2013). The Caenorhabditis elegans lifespan machine. Nat. Methods 10, 665-670. https://doi.org/10.1038/nmeth.2475
  73. Stroustrup, N., Anthony, W.E., Nash, Z.M., Gowda, V., Gomez, A., Lopez-Moyado, I.F., Apfeld, J., and Fontana, W. (2016). The temporal scaling of Caenorhabditis elegans ageing. Nature 530, 103-107. https://doi.org/10.1038/nature16550
  74. Sun, A.Y., and Lambie, E.J. (1997). gon-2, a gene required for gonadogenesis in Caenorhabditis elegans. Genetics 147, 1077-1089.
  75. Szewczyk, N.J., Udranszky, I.A., Kozak, E., Sunga, J., Kim, S.K., Jacobson, L.A., and Conley, C.A. (2006). Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J. Exp. Biol. 209, 4129-4139. https://doi.org/10.1242/jeb.02492
  76. Troemel, E.R. (2016). Host-microsporidia interactions in Caenorhabditis elegans, a model nematode host. Microbiol Spectr 4.
  77. Troemel, E.R., Felix, M.A., Whiteman, N.K., Barriere, A., and Ausubel, F.M. (2008). Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol. 6, 2736-2752.
  78. Van Raamsdonk, J.M., and Hekimi, S. (2011). FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mech. Ageing Dev. 132, 519-521. https://doi.org/10.1016/j.mad.2011.08.006
  79. Van Raamsdonk, J.M., and Hekimi, S. (2012). Superoxide dismutase is dispensable for normal animal lifespan. Proc. Natl. Acad. Sci. USA 109, 5785-5790. https://doi.org/10.1073/pnas.1116158109
  80. Vilchez, D., Saez, I., and Dillin, A. (2014). The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat. Commun. 5, 5659. https://doi.org/10.1038/ncomms6659
  81. Walter, P., and Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081-1086. https://doi.org/10.1126/science.1209038
  82. Wang, Y., and Hekimi, S. (2015). Mitochondrial dysfunction and longevity in animals: Untangling the knot. Science 350, 1204-1207. https://doi.org/10.1126/science.aac4357
  83. Wang, D., Liu, P., and Xing, X. (2010). Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure. Environ Toxicol Pharmacol 29, 213-222. https://doi.org/10.1016/j.etap.2010.01.002
  84. Xian, B., Shen, J., Chen, W., Sun, N., Qiao, N., Jiang, D., Yu, T., Men, Y., Han, Z., Pang, Y., et al. (2013). WormFarm: a quantitative control and measurement device toward automated Caenorhabditis elegans aging analysis. Aging Cell 12, 398-409. https://doi.org/10.1111/acel.12063
  85. Yang, W., and Hekimi, S. (2010). A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 8, e1000556. https://doi.org/10.1371/journal.pbio.1000556
  86. Yang, J.S., Nam, H.J., Seo, M., Han, S.K., Choi, Y., Nam, H.G., Lee, S.J., and Kim, S. (2011). OASIS: online application for the survival analysis of lifespan assays performed in aging research. PLoS One 6, e23525. https://doi.org/10.1371/journal.pone.0023525
  87. Ziehm, M., Ivanov, D.K., Bhat, A., Partridge, L., and Thornton, J.M. (2015). SurvCurv database and online survival analysis platform update. Bioinformatics 31, 3878-3880.

Cited by

  1. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00203
  2. Auxin-Mediated Sterility Induction System for Longevity and Mating Studies in Caenorhabditis elegans vol.8, pp.8, 2017, https://doi.org/10.1534/g3.118.200278
  3. Prefoldin 6 mediates longevity response from heat shock factor 1 to FOXO in C. elegans vol.32, pp.23, 2017, https://doi.org/10.1101/gad.317362.118
  4. Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing vol.9, pp.None, 2017, https://doi.org/10.1038/s41598-019-42650-8
  5. Understanding lipidomic basis of iron limitation induced chemosensitization of drug-resistant Mycobacterium tuberculosis vol.9, pp.4, 2019, https://doi.org/10.1007/s13205-019-1645-4
  6. A Simple and a Reliable Method to Quantify Antioxidant Activity In Vivo vol.8, pp.5, 2019, https://doi.org/10.3390/antiox8050142
  7. The Stress-Chip: A microfluidic platform for stress analysis in Caenorhabditis elegans vol.14, pp.5, 2019, https://doi.org/10.1371/journal.pone.0216283
  8. Non-Coding RNAs in Caenorhabditis elegans Aging vol.42, pp.5, 2019, https://doi.org/10.14348/molcells.2019.0077
  9. Polyphenols and Metabolites Enhance Survival in Rodents and Nematodes-Impact of Mitochondria vol.11, pp.8, 2017, https://doi.org/10.3390/nu11081886
  10. New label‐free automated survival assays reveal unexpected stress resistance patterns during C. elegans aging vol.18, pp.5, 2019, https://doi.org/10.1111/acel.12998
  11. Animal Models of Type III Secretion System-Mediated Pathogenesis vol.8, pp.4, 2017, https://doi.org/10.3390/pathogens8040257
  12. The NLRP3-Mediated Neuroinflammatory Responses to CdTe Quantum Dots and the Protection of ZnS Shell vol.15, pp.None, 2020, https://doi.org/10.2147/ijn.s246578
  13. Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes vol.12, pp.12, 2017, https://doi.org/10.1021/acsami.9b22595
  14. SK channel-mediated metabolic escape to glycolysis inhibits ferroptosis and supports stress resistance in C. elegans vol.11, pp.4, 2017, https://doi.org/10.1038/s41419-020-2458-4
  15. VATA: A Poly(vinyl alcohol)- and Tannic Acid-Based Nontoxic Underwater Adhesive vol.12, pp.18, 2017, https://doi.org/10.1021/acsami.0c02037
  16. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans vol.29, pp.10, 2017, https://doi.org/10.1093/hmg/ddaa055
  17. Infertility induced by auxin in PX627 Caenorhabditis elegans does not affect mitochondrial functions and aging parameters vol.12, pp.12, 2020, https://doi.org/10.18632/aging.103413
  18. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs vol.13, pp.8, 2020, https://doi.org/10.3390/ph13080164
  19. The SEM-4 Transcription Factor Is Required for Regulation of the Oxidative Stress Response in Caenorhabditis elegans vol.10, pp.9, 2020, https://doi.org/10.1534/g3.120.401316
  20. A Simple Nematode Infection Model for Studying Candida albicans Pathogenesis vol.59, pp.1, 2017, https://doi.org/10.1002/cpmc.114
  21. A robust and miniaturized screening platform to study natural products affecting metabolism and survival in Caenorhabditis elegans vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-69186-6
  22. The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone receptor DAF-12 in the intestine vol.10, pp.1, 2017, https://doi.org/10.1038/s41598-020-73712-x
  23. Combinatorial Approach Using Caenorhabditis elegans and Mammalian Systems for Aging Research vol.44, pp.7, 2017, https://doi.org/10.14348/molcells.2021.0080
  24. Review of Biological Effects of Acute and Chronic Radiation Exposure on Caenorhabditis elegans vol.10, pp.8, 2017, https://doi.org/10.3390/cells10081966
  25. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila , Zebrafish, and C. elegans Models vol.22, pp.16, 2017, https://doi.org/10.3390/ijms22168465
  26. Eyeless Worms Can Run Away from Dangerous Blues vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0201
  27. Diagnosis of biofilm infections: current methods used, challenges and perspectives for the future vol.131, pp.5, 2017, https://doi.org/10.1111/jam.15049
  28. Blumea laciniata protected Hep G2 cells and Caenorhabditis elegans against acrylamide-induced toxicity via insulin/IGF-1 signaling pathway vol.158, pp.None, 2017, https://doi.org/10.1016/j.fct.2021.112667
  29. Phosphorothioate-DNA bacterial diet reduces the ROS levels in C. elegans while improving locomotion and longevity vol.4, pp.1, 2017, https://doi.org/10.1038/s42003-021-02863-y
  30. Toxic stress-specific cytoprotective responses regulate learned behavioral decisions in C. elegans vol.19, pp.1, 2021, https://doi.org/10.1186/s12915-021-00956-y
  31. Gallol-based constant underwater coating adhesives for severe aqueous conditions vol.634, pp.None, 2022, https://doi.org/10.1016/j.colsurfa.2021.127948