DOI QR코드

DOI QR Code

Characteristics of Landslide Occurrence and Change in the Matric Suction and Volumetric Water Content due to Rainfall Infiltration

강우침투에 의한 산사태 발생 및 모관흡수력과 체적함수비의 변화 특성에 관한 연구

  • Seo, Won-Gyo (Department of Geology, Kyungpook National University) ;
  • Choi, Junghae (Department of Earth Science Education, Kyungpook National University) ;
  • Chae, Byung-Gon (Planning & Coordination Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Young-Suk (Geo-Environmental Hazards & Quaternary Geology Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 서원교 (경북대학교 지질학과) ;
  • 최정해 (경북대학교 지구과학교육과) ;
  • 채병곤 (한국지질자원연구원 기획조정부) ;
  • 송영석 (한국지질자원연구원 지질환경재해연구센터)
  • Received : 2017.12.08
  • Accepted : 2017.12.15
  • Published : 2017.12.30

Abstract

We performed landslide flume tests to analyze characteristics of landslide occurrence and change in the ground materials due to rainfall infiltration. The test apparatus is composed of flume, rainfall simulator, and measurement sensors and landslides were triggered by heavy rainfall (Intensity=200 mm/hr) sprinkled at the above of an artificial slope. The measurement sensors for matric suction and volumetric water content were installed with 3 sets at shallow (GL-0.2 m), middle (GL-0.4 m), and deep depth (GL-0.6 m) in the slope and the tests were performed with in-situ, loose, and dense condition of each weathered soils of granite, gneiss, and mudstone. The analyses show that surface erosion was dominant in initial time of the test due to heavy rainfall and then landslides occur following locally happened transverse tension cracks. The characteristics of landslide were both shallow failure because of a spread of wetting front induced by the rainfall infiltration and retrogressive failure. While the matric suction was decreased rapidly without any precursor in the soil saturation, the volumetric water content was increased gradually, reached its maximum value, and then decreased rapidly with landslide.

본 연구에서는 산사태 모형토조 실험을 통해 강우침투에 의해 나타나는 산사태의 발생특성 및 지반재료의 변화특성에 관하여 분석하였다. 실험장치는 모형토조, 강우재현장치, 계측장치로 구성되어 있으며, 인공사면 상부에서 200 mm/hr의 극한강우를 살수함으로써 산사태를 유발하였다. 모관흡수력과 체적함수비 계측장치는 인공사면의 천부(GL-0.2 m), 중부(GL-0.4 m), 심부(GL-0.6 m)의 각 심도별로 3세트씩 설치하였으며, 실험은 화강암 풍화토, 편마암 풍화토, 이암 풍화토 각각에 대한 현장조건과 상대적으로 느슨한 조건 및 조밀한 조건으로 나누어 실험을 진행하였다. 분석결과, 극한강우에 의하여 실험 초반에는 사면 표층에서 세굴현상이 우세하게 나타나다가 이후 국지적으로 발생한 횡적인 인장균열면을 따라서 산사태가 발생했다. 산사태는 강우침투에 따른 습윤전선(wetting front)의 전이로 인해 천부에서부터 심부로 점차 확장되는 천층파괴(shallow failure)의 형태를 띰과 동시에 사면의 선단부(toe part)에서부터 정상부(crest part)로 점차 전이되는 후퇴성붕괴(retrogressive failure)의 양상을 보였다. 강우침투에 따른 포화영역에서 모관흡수력은 아무런 전조현상 없이 급격하게 감소하는 반면에, 체적함수비는 점진적으로 증가하다가 최대값에 도달하여 이 값을 일정시간 유지한 뒤 산사태 발생 시 급격히 감소하는 것으로 나타났다.

Keywords

References

  1. Abramson, L., Lee, T., Sharma, S., and Boyce, G., 1996, Slope stability and stabilization methods, John Wiley & Sons, 629p.
  2. Aleotti, P., 2004, A warning system of rainfall-induced shallow failure, Engineering Geology, 73, 247-265. https://doi.org/10.1016/j.enggeo.2004.01.007
  3. Baum, R. L., Godt, J. W., Harp, E. L., McKenna, J. W., and McMullen, S. R., 2005, Early warning of landslides for rail traffic between Seattle and Everett, Washington, USA, in Hungr, O., Fell, R., Couture, R., and Eberhardt, E., eds., Landslide Risk Management: Proceedings of the international conference on Landslide Risk Management, Vancouver, Canada, 30 May-3 June 2005: New York, A.A. Balkema, 731-740.
  4. Bil, M., Andrasik, R., Zahradnicek, P., Kubecek, J., Sedonik, J., and Stepanek, P., 2015, Total water content thresholds for shallow landslides, Outer Western Carpathians, Landslides, 13, 337-347.
  5. Brand, E. W., Premchitt, J., and Phillipson, H. B., 1984, Relationship between rainfall and landslides, In Proceedings of the 4th International Symposium on Landslides, Toronto, Balkema, Rotterdam, the Netherlands, 1, 337-384.
  6. Caine, N., 1980, The rainfall intensity-duration control of shallow landslides and debris flows, Geografiska Annaler, Sereis A, Physical Geography, 62, 23-27.
  7. Chae, B. G. and Kim, M. I., 2012, Suggestion of a method for landslide early warning using the change in the volumetric water content gradient due to rainfall infiltration, Environmental Earth Sciences, 66(7), 1973-1986. https://doi.org/10.1007/s12665-011-1423-z
  8. Chae, B. G., Lee, J. H., Park, H. J., and Choi. J., 2015, A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration, Natural Hazards and Earth System Sciences, 15, 1835-1849. https://doi.org/10.5194/nhess-15-1835-2015
  9. Chleborad, A. F., Baum, R. L., and Godt, J. W., 2008, A prototype system for forecasting landslides in the Seattle, Washington Area, In: Baum, R. L., Godt, J. W., Highland, L. M., (eds) Engineering geology and landslides of the Seattle, Washington area: Geol Soc of America reviews in engineering geology, Geol Soc of America, Boulder, 103-120.
  10. Church, M. and Miles, M. J., 1987, Meteorological antecedents to debris flow in southwestern British Columbia; Some case studies, Review in engineering geology, 7, 63-79.
  11. Crosta, G. B. and Frattini. P., 2001, Rainfall thresholds for triggering soil slips and debris flow, In: Mugnai A, Guzzetti F, Roth G (eds) Mediterranean storms, Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, Siena, Italy, 463-487.
  12. Fang, H., Cui, P., Pei, L. Z., and Zhou, X. J., 2012, Model testing on rainfall -induced landslide of loose soil in Wenchuan earthquake region, Nat. Hazards Earth Syst Sci, 12, 527-533. https://doi.org/10.5194/nhess-12-527-2012
  13. Glade, T., 2000, Modeling landslide-triggering rainfalls in different regions of New Zealand-the soil water status model, Zeitschrift fur Geomorphologie NE 122, 63-84.
  14. Guezzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P., 2008, The rainfall intensity-duration control of shallow landslides and debris flows: an update, Landslides, 5, 3-17. https://doi.org/10.1007/s10346-007-0112-1
  15. Guidicini, G. and Iwasa, O. Y., 1977, Tentative correlation between rainfall and landslides in a humid, tropical environment, Bull Int Assoc Eng Geol, 16, 13-18. https://doi.org/10.1007/BF02591434
  16. Hong, W. P., Kim, Y. W., Kim, S. K., Han, J. G., and Kim, M., 1990, Prediction of rainfall-triggered landslides in Korea, The Journal of Engineering Geology, 6(2), 159-167 (in Korean with English abstract).
  17. Huang, C. C., Ju, Y. J., Hwu, L. K., and Lee, J. L., 2009, Internal soil moisture and piezometric responses to rainfallinduced shallow slope failures, Journal of Hydrology, 370(1-4), 39-51. https://doi.org/10.1016/j.jhydrol.2009.02.051
  18. Huang, C. C., Lo, C. L., Jang, J. S., and Hwu, L. K., 2008, Internal soil moisture response to rainfall-induced slope failures and debris discharge, Engineering Geology, 101(3-4), 134-145. https://doi.org/10.1016/j.enggeo.2008.04.009
  19. Jan, C. D. and Lee, M. H., 2004, A rainfall-based debris flow warning model and its application in Taiwan, International Conference on Slope Disaster Mitigation Strategy, 111-119.
  20. Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M. III., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., and Zatkin, R. S., 1987, Real-time landslide warning during heavy rainfall, Science, 238(13), 921-925. https://doi.org/10.1126/science.238.4829.921
  21. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2008, Development of landslide prediction technology and damage mitigation countermeasures, 123p (in Korean with English abstract).
  22. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2012, Development of landslide early warning method based on three dimensional monitoring under extreme rainfall, 350p (in Korean with English abstract).
  23. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2014, Development of an integrated early detection system of landslides based on a real-time monitoring, 221p (in Korean with English abstract).
  24. KIGAM (Korea Institute of Geoscience and Mineral Resources), 2016, Development of an integrated early detection technology of landslides based on a real-time monitoring, 217p (in Korean with English abstract).
  25. Kim, J. H., Jeong, S. S., Park, S. W., and Sharma, J., 2004, Influence of rainfall-induced wetting on the stability of slopes in weathered soils, Eng Geol, 75, 251-262. https://doi.org/10.1016/j.enggeo.2004.06.017
  26. Kim, M. I. and Nishigaki, M., 2006, Slope failure predicting method using the monitoring of volumetric water content in soil slope, The Journal of Engineering Geology, 16(2), 135-143 (in Korean with English abstract).
  27. Kim, W. Y., Lee, S. R., Kim, K. S., and Chae, B. G., 1998, Landslide types and susceptibilities related to geomorphic characteristics - Yeonchon-Chulwon area -, The Journal of Engineering Geology, 8(2), 115-130 (in Korean with English abstract).
  28. Korea Forest Service, 2016, An extent of landslide damage, Retrieved from http://www.forest.go.kr/newkfsweb/html/HtmlPage.do?pg=/lsis/UI_LSIS_1000_050101.html&orgId=lsis&mn=KFS_02_06_05_07_01.
  29. Lu, N. and Godt, J., 2008, Infinite-slope stability under steady unsaturated seepage conditions, Water Resources Research, 44(11), 1-13.
  30. Lu, N. and Likos, W. J., 2006, Suction stress characteristic curve for unsaturated soil, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 132(2), 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  31. Lumb, P., 1975, Slope failures in Hong Kong, Quarterly Journal of Engineering Geology, 8(1), 31-65. https://doi.org/10.1144/GSL.QJEG.1975.008.01.02
  32. Reneau, S. L. and Dietrich, W. E., 1987, The importance of hollow in debris flow studies, Review in Engineering Geology, 7, 93-104.
  33. Sirangelo, B. and Braca, G., 2004, Identification of hazard conditions for mudflow occurrence by hydrological model: application of FLaIR model to Sarno warning system, Eng Geol, 73, 267-276. https://doi.org/10.1016/j.enggeo.2004.01.008
  34. Sirangelo, B. and Versace, P., 1996, A real time forecasting model for landslides triggered by rainfall, Meccanica, 31, 73-85. https://doi.org/10.1007/BF00444156
  35. Song, Y. S., 2013, Stability analysis of the unsaturated infinite slope considering suction stress under steady infiltration condition, Journal of the Korean geotechnical society, 29(9), 5-15 (in Korean with English abstract). https://doi.org/10.7843/kgs.2013.29.9.5
  36. Song, Y. S., Chae, B. G., and Lee, J., 2016, A method for evaluating the stability of an unsaturated slope in natural terrain during rainfall, Engineering Geology, 210, 84-92. https://doi.org/10.1016/j.enggeo.2016.06.007
  37. Sun, H. W., Wong, H. N., and Ho, K. K. S., 1998, Analysis of infiltration in unsaturated ground, In: Proceedings of the annual seminar on slope engineering in Hong Kong, 101-109.
  38. Terzaghi, K., 1943, Theoretical soil mechanics, John Wiley and Sons, New York, NY, 503p.
  39. Tohari, A., Nishigaki, M., and Komatsu, M., 2007, Laboratory rainfall-induced slope failure with moisture content measurement, Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 575-587. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:5(575)

Cited by

  1. 토사비탈면 표층붕괴 위험 예측을 위한 체적함수비 증가 특성 연구 vol.30, pp.4, 2020, https://doi.org/10.9720/kseg.2020.4.485