DOI QR코드

DOI QR Code

Behavior of fibre reinforced cementitious material-filled steel tubular columns

  • Kharoob, O.F. (Department of Structural Engineering, Faculty of Engineering, Tanta University) ;
  • Taman, M.H. (Department of Structural Engineering, Faculty of Engineering, Tanta University)
  • Received : 2016.11.09
  • Accepted : 2017.01.20
  • Published : 2017.03.20

Abstract

This paper presents an experimental study, investigating the compressive behavior of glass-fibre reinforced and unreinforced cementitious material-filled square steel tubular (GFCMFST and CMFST) columns. The specimens were manufactured by using high performance cementitious materials without using coarse aggregate. The influence of adding glass-fibres to the mix on the behavior of both axially and eccentrically loaded columns is considered. It was found that adding glass fibre improvesthe confinement behavior, the axial compressive strength, the stiffness and the toughness of both axially and eccentrically loaded columns. The compressive strength of axially loaded columns is compared with strength predictions according to EC4 and the AISC specification. It was found that the design predictions according to EC4 and the AISC codes provide conservative results for CMFST and GFCMFST columns. Alternatively, the axial load-bending moment interaction diagrams specified in theEC4 are conservative for the eccentrically tubular CMFST and GFCMFST tested columns.

Keywords

Acknowledgement

Supported by : Tanta University

References

  1. AISC 360 (2010), Load and Resistance Factor Design Specification, for Structural Steel Buildings; American Institute of Steel Construction, Chicago, IL, USA.
  2. Albareda-Valls, A. and Carreras, J.M. (2015), "Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression", Steel Compos. Struct., Int. J., 18(4), 1023-1044. https://doi.org/10.12989/scs.2015.18.4.1023
  3. ASTM C230M-14 (2014), Standard Specification for Flow Table for Use in Tests of Hydraulic Cement.
  4. ASTM C494 / C494M-13 (2013), Standard Specification for Chemical Admixtures for Concrete; Annual Book of ASTM Standard.
  5. Australian Standard (1991), Methods for Tensile Testing of Metals; AS 1391, Standards Association of Australia, Sydney, Australia.
  6. Chung, K-S., Kim, J-H. and Yoo, J-H. (2013), "Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading", Steel Compos. Struct., Int. J., 14(2), 133-153. https://doi.org/10.12989/scs.2013.14.2.133
  7. Dabaon, M., El-Khoriby, S., El-Boghdadi, M. and Hassanein, M.F. (2009), "Confinement effect of stiffened and unstiffened concrete-filled stainless steel tubular stub columns", J. Constr. Steel Res., 65(8-9), 1846-1854. https://doi.org/10.1016/j.jcsr.2009.04.012
  8. Ellobody, E. (2007), "Nonlinear behavior of concrete-filled stainlesssteel stiffened slender tube columns", Thin-Wall. Struct., 45(3), 259-273. https://doi.org/10.1016/j.tws.2007.02.011
  9. Ellobody, E. and Ghazy, M.F. (2012), "Experimental investigation of eccentrically loaded fibre reinforced concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 76, 167-176. https://doi.org/10.1016/j.jcsr.2012.04.001
  10. EN 196-1:2005 (2005), Methods of Testing cement - Part 1: Determination of Strength.
  11. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures - Part 1.1: General Rules and Rules for Buildings; British Standard Institution, London, UK, ENV 1994-1-1.
  12. Han, L-H. (2004), "Flexural behavior of concrete-filled steel tubes", J. Constr. Steel Res., 60(2), 313-337. https://doi.org/10.1016/j.jcsr.2003.08.009
  13. Han, L-H., Yao, G-H. and Liao, F-Y. (2006), "Further study on the flexural behavior of concrete-filled steel tubes", J. Constr. Steel Res., 62(6), 554-565. https://doi.org/10.1016/j.jcsr.2005.09.002
  14. Jiang, A-Y., Chen, J. and Jin, W-L. (2013), "Experimental investigation and design of thin-walled concrete-filled steel tubes subject to bending", Thin-Wall. Struct., 63, 44-50. https://doi.org/10.1016/j.tws.2012.10.008
  15. Johansson, M. (2002), "Composite action and confinement effects in tubular steel-concrete columns", Ph.D. Thesis; Chalmers University of Technology, Goteborg, Sweden.
  16. Li, V.C., Horikoshi, T., Ogawa, A., Torigoe, S. and Saito, T. (2004), "Micromechanics-based durability study of polyvinyl alcohol-engineered cementitious composite (PVA-ECC)", ACI Mater. J., 101(1), 242-248.
  17. Liang, Q.Q., Patel, V.I. and Hadi, M.N.S. (2012), "Biaxially loaded high-strength concrete-filled steel tubular slender beamcolumns, Part I: Multiscale simulation", J. Constr. Steel Res., 75, 64-71. https://doi.org/10.1016/j.jcsr.2012.03.005
  18. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2012a), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling", J. Constr. Steel Res., 70, 377-384. https://doi.org/10.1016/j.jcsr.2011.10.019
  19. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2012b), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part II: Behavior", J. Constr. Steel Res., 70, 368-376. https://doi.org/10.1016/j.jcsr.2011.10.021
  20. Patel, V.I., Uy, B., Prajwal, K.A. and Aslani, F. (2016), "Confined concrete model of circular, elliptical and octagonal CFST short columns", Steel Compos. Struct., Int. J., 22(3), 497-520. https://doi.org/10.12989/scs.2016.22.3.497
  21. Qu, X., Chen, Z. and Sun, G. (2015), "Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods", Steel Compos. Struct., Int. J., 18(1), 71-90. https://doi.org/10.12989/scs.2015.18.1.071
  22. Schafer, B.W. and Pekoz, T. (1998), "Computational modelling of cold-formed steel: Characterizing geometric imperfections and residual stresses", J. Constr. Steel Res., 47(3), 193-210. https://doi.org/10.1016/S0143-974X(98)00007-8
  23. Shanmugam, N.E. and Lakshmi, B. (2001), "State of the art report on steel-concrete composite columns", J. Constr. Steel Res., 57(10), 1041-1080. https://doi.org/10.1016/S0143-974X(01)00021-9
  24. Srinivasa Rao, P. and Seshadri Sekhar, T. (2008), "Impact strength and workability behavior of glass fibre self compacting concrete", Int. J. Mech. Solids, 3(1), 61-74.
  25. Tao, Z., Han, L.H. and Wang, Z.B. (2005), "Experimental behaviour of stiffenedconcrete-filled thin-walled hollow steel structural (HSS) stub columns", J. Constr. Steel Res., 61(7), 962-983. https://doi.org/10.1016/j.jcsr.2004.12.003
  26. Wang, Y., Yang, Y. and Zhang, S. (2012), "Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns", Thin-Wall. Struct., 58, 18-31. https://doi.org/10.1016/j.tws.2012.04.015

Cited by

  1. Dynamic analysis of a cylindrical boom based on Miura origami vol.28, pp.5, 2018, https://doi.org/10.12989/scs.2018.28.5.607
  2. Numerical and Experimental Investigations of Different Cross-Sectional Configuration of Plain Concrete and CFST Short Columns Under Axial Compression vol.17, pp.10, 2017, https://doi.org/10.1007/s40999-019-00427-0