DOI QR코드

DOI QR Code

Effects of Alkali Metals and Chlorine on Corrosion of Super Heater Tube in Biomass Circulating Fluidized Bed Boiler

순환유동층보일러의 과열기 튜브 부식에 알칼리 금속과 염소가 미치는 영향

  • Received : 2016.10.19
  • Accepted : 2016.11.24
  • Published : 2017.02.10

Abstract

This study provides the identification of corrosion cause substances in super heater tube from a commercial scale circulating fluidized bed boiler. Electricity is produced by the combustion of biomass mainly wood waste. The biomass, super heater tube, super heater tube ash, and boiler ash were collected and components associated with corrosion were analyzed. A large amount of oxygen-containing material was found due to oxidation. The chlorine content was analyzed as 6.1% and 4.3% in super heater tube ash and boiler ash respectively which were approximately 20 and 14 times higher than those of designed values. Also, alkaline metal contents (K, Na, Ca) were very high in ash samples collected from super heater tube and boiler. The tendency of slagging and fouling was predicted based on X-Ray Fluorescence (XRF) results. Basicity that can lead to slagging was estimated as 3.62 and 2.72 in super heater tube and boiler ash, respectively. Slagging would occur with ash content when considering the designed value as 0.35.

본 연구에서는 순환유동층 보일러 과열기 튜브의 부식 원인물질을 규명하여, 부식방지를 위한 방안을 모색하고자 하였다. 연료, 과열기 튜브 부식부위, 과열기 튜브에 부착된 재 및 보일러 재를 채취하여 성분분석을 수행하였다. 과열기 튜브 부식부위에서 산화로 인한 O성분이 함유되어 있는 것을 확인하였다. 과열기 튜브 부착 재 및 보일러 재에서 6.1% 및 4.3%의 Cl이 분석되었으며, 이는 설계값의 약 14-20배 정도 높은 수치이다. 또한 알칼리 금속물질(K, Na, Ca)의 함량이 매우 높게 분석되었다. XRF 데이터를 이용하여 보일러에서 재의 슬래깅과 파울링에 대한 영향을 예측하였다. Basicity는 과열기 튜브 부착 재 및 보일러 재에서 각각 3.62 및 2.72로 산정되었으며, 설계값인 0.35에 비하여 높은 수치를 갖는 것으로 확인되었다.

Keywords

References

  1. Y. J. Song, Trends and Implications of Energy Transition Policy in Germany, KERI Brief 16-04, Korea Economic Research Institute (2016).
  2. N. Y. Jeong and L. H. Kim, The study on CDM project of ligneous biomass co-fired in coal thermal power plant, J. Energy Eng., 20(3), 231-235 (2011). https://doi.org/10.5855/ENERGY.2011.20.3.231
  3. J. H. Lee, J. K. Kim, E. S. Yim, C. S. Chung, and H. J. Rheem, Overview of the biomass as a renewable energy, K. Korean Oil Chem. Soc., 29(4), 638-652 (2012). https://doi.org/10.12925/jkocs.2012.29.4.638
  4. J. W. Lee and C. H. Park, The type and method of production of bio-energy, News Inf. Chem. Eng., 29(4), 493-499 (2011).
  5. M. G. Lee, Introduction of cogeneration using biomass, Daewoo Eng. Technol. Rep., 24(1), 53-62 (2008).
  6. Korea Energy Agency, Renewable Energy Status Report: Renewable Energy Policy Network for the 21st Century (2015).
  7. Y. Fukuda and M. Kumon, Application of high velocity flame spraying for the heat exchange tubes in coal fired boilers, Proceed. Int. Thermal Spray Confer. Kobe, Japan (1995).
  8. W. Liu, Failure analysis on the economisers of a biomass fuel boiler, Eng. Fail. Anal., 31, 101-117 (2013). https://doi.org/10.1016/j.engfailanal.2013.01.024
  9. B. Q. Wang, Erosion-corrosion of coatings by biomass-fired boiler fly ash, Wear, 188, 40-48 (1995) https://doi.org/10.1016/0043-1648(95)06598-9
  10. J. Y. Xie and P. M. Walsh, Erosion-corrosion of carbon steel by products of coal combustion, Wear, 186, 256-265 (1995).
  11. A. J. Denny, Principles and Prevention of Corrosion 2nd edition, 351-352, Macmillan, NY, USA (1992).
  12. S. K. Das, S. Hegde, P. K. Dey, and S. P. Mehrotra, Erosion-oxidation response of boiler grade steels: A mathematical investigation, Res. Lett. Mater. Sci., Article ID 542161 (2008).
  13. L. Zhang, V. Sazonov, J. Kenta, T. Dixon, and V. Novozhilov, Analysis of boiler-tube erosion by the technique of acoustic emission part I. mechanical erosion, Wear, 250, 762-769 (2001). https://doi.org/10.1016/S0043-1648(01)00714-1
  14. Hantap Professional Engineers, Prevention of Metal Corrosion (2006).
  15. Y. S. Li, S. Pasten, and M. Spiegel, High temperature interaction of pure Cr with KCl, Mater. Sci. Forum, 461, 1047-1054 (2004).
  16. J. Pettersson, H. Asteman, J. E. Svensson, and L. G. Johansson, KCL-induced corrosion of a 304-type austenitic stainless steel at $600\;^{\circ}C$ - the role of potassium, oxidation of metals, 64, 26-41 (2005).
  17. D. B. Lee, High-temperature corrosion by chlorides in biomass-fired plants, J. Korean Inst. Surf. Eng., 49(1), 14-19 (2016). https://doi.org/10.5695/JKISE.2016.49.1.14
  18. E. Reese and H. J. Grabke, Effects of chlorides on the oxidation of the $2^{1/4}$ Cr-1 Mo steel, Mater. Corros., 43, 547-557 (1992). https://doi.org/10.1002/maco.19920431202
  19. E. Reese and H. J. Grabke, Effects of sodium chloride on the oxidation of high alloy Cr- and Cr-Ni-steels, Mater. Corros., 44, 41-47 (1993). https://doi.org/10.1002/maco.19930440204
  20. N. Folkesson, L. G. Johansson, and J. E. Svensson, Initial stages of the HCl-induced high-temperature corrosion of alloy 310, J. Electrochem. Soc., 154(9), 515-521 (2007).
  21. O. Seri, The Effect of NaCl concentration of the corrosion behavior of aluminum containing irom, Corros. Sci., 36(10), 1789-1803 (1994). https://doi.org/10.1016/0010-938X(94)90132-5
  22. R. Ericsson, The Influence of sodium chloride on the atmospheric corrosion of steel, Mater. Corrs., 29, 400-403 (1978).
  23. W. Huijbregts and R. Leferink, Latest advances in the understanding of acid dewpoint corrosion - corrosion and stress corrosion cracking in combustion gas condensates, Anti-Corros. Methods Mater., 51, 173-188 (2004). https://doi.org/10.1108/00035590410533129
  24. W. M. Cox, W. Huijbregts, and R. Leferink, Components susceptible to dew-point corrosion, ASM Handb., 13C, 491-496 (2006).
  25. A. V. Levy, The erosion-corrosion of tubing steels in combustion boiler environments, Corros. Sci., 35, 1035-1043 (1993). https://doi.org/10.1016/0010-938X(93)90322-8
  26. H. H. Krause, High temperature corrosion problems in waste incineration system, J. Mater. Energy Syst., 7(4), 322-332 (1986). https://doi.org/10.1007/BF02833571
  27. P. D. Miller and H. H. Krause, Corrosion of carbon and stainless steels in flue gases from municipal incinerators, Proceedings of The American Society of Mechanical Engineers (ASME) National Incinerator Conference, ASME, New York, 300-309 (1972).
  28. L. C. Brown, J. F. Funk, and S. K. Showalter, High efficiency generation of hydrogen fuels using nuclear power, Annual Report to the U.S. Department of Energy, Nuclear Energy Research Initiative (NERI) GA-A23451 (2000).
  29. I. Obernberger and F. Biedermann, Fractionate heavy metal separation in biomass combustion plants as a primary measure for a sustainable ash utilization, heavy metal fractionation in biomass combustion plants, Proceeding of Developments in Thermochemical Biomass Conversion, Canada, 1368-1383 (1996).
  30. R. Riedl, J. Dahl, O. Obernberger, and M. Narodoslawsky, Corrosion in fire tube boilers of biomass combustion plants, Proceedings of the China Internatioanl Corrosion Control Conference, China Chemical Anticorrosion Technology Association (1999).
  31. S. R. Chandrasekaran, P. K. Hopke, L. Rector, G. Allen, and L. Lin, Chemical composition of wood chips and wood pellets, Energy Fuels, 26, 4932-4937 (2012). https://doi.org/10.1021/ef300884k
  32. S. C. Srivastava, K. M. Godiwalla, and M. K. Banerjee, Review fuel ash corrosion of boiler and superheater tubes, J. Mater. Sci., 32, 835-849 (1997). https://doi.org/10.1023/A:1018585129341
  33. B. C. Choi, H. T. Kim, and W. G. Chun, A study on the slagging behavior with various composition of coal ash, J. Energy Eng., 8(3), 445-451 (1999).
  34. J. N. Harb, C. L. Munson, and G. H. Richards, Use of equilibrium calculation to predict the behavior of coal ash in combustion systems, Energy Fuels, 7, 208-214 (1993). https://doi.org/10.1021/ef00038a008